University Paris-Dauphine – Energy transitions in France, Germany and Europe

The Transformation of Germany's Energy System – Not a Sprint, but a Marathon!

30 May 2013

Global Challenges in Energy Policy

Figure 2.6 • World primary energy demand by fuel in the New Policies Scenario

Mtoe

Global Challenges in Energy Policy

Figure 1: EU dependence on imports will increase significantly for all the relevant energy sources

Share of imports in overall energy consumption 100% 86% 88% 81% 81% 76% 75% 70% 66% 62% 61% 53% 51% 49% 50% 37% 30% Gas Oil Total 0% 1 bis 10 Gt Strategische Ellipse 2000 2010 2020 2030 2000 2010 2020 2030 2000 2010 2020 2030 2000 2010 2020 2030 > 10 bis 20 Gt mit ca. 71 % der konventionellen Welterdölreserven und ca. 69 % der Welterdgasreserven > 20 Gt Source: European Commission Reserven + Ressourcen Reserven Russland 60 3.000 km Erdöl 2.000 km 000 km 70 Erdgas 1750 200 Kohle 1.500 60 Kernbrennstoffe 400 200 400 600 800 1000 0 1200 1400 Jahre Turkmenistan

Global Challenges in Energy Policy

The Energy Concept...

... meets the global challenges in energy policy.

... is the most ambitious strategy for the transformation and decarbonization of the energy system.

Targets of the Energy Concept

	2020	2030	2040	2050	Acchieved so far
Reduction of Primary Energy Consumption (compared to 2008)	- 20 %			- 50 %	- 3,3%
Reduction of final energy consumption in transport (compared to 1990)	- 10 %			- 40%	+ 7,5 %
Reduction of gross electricity consumption (compared to 2008)	- 10 %			- 25 %	- 0,7 %
CO2- Reduction (compared to 1990)	- 40 %	- 55 %	- 70 %	- 80 - 95 %	- 23 %
Share of Renewables in gross final energy consumption	18 %	30 %	45 %	60 %	12,2 %
Share of Renewables in gross electricity consumption	35 %	50 %	65 %	80 %	23,1 %

Further Objectives: Improvement of the energy productivity by 2,1% per annum (since 1990: +38 %; currently 0,9% p.a.) and the doubling of the rate of modernisation to 2% p.a.

litglied des Deutschen Bundestages

The energy concept adresses all sectors: Electricity, buildings and transport

Ouelle: Viessmann 2013.

Energy consumption in the different sectors in per cent

Monatliche Energiekosten im Drei-Personen-Musterhaushalt im Jahr 2012

Rund drei Viertel der Energiekosten entfallen auf Heizung und Auto, ein Viertel auf Strom. Die Umlage nach dem Erneuerbare-Energien-Gesetz (EEG) macht weniger als vier Prozent aus.

* Gebäudebeheizung, Warmwasser (ohne Prozesswärme)

** insbes. industrielle Prozesse, mechanische Energie etc.

- (1) Increase energy efficiency in all sectors
- (2) Developing energy infrastructure Electricity transmission grid and storage facilities
- (3) Supply security and grid stability
- (4) Preservation of Germany's industrial competitiveness
- (5) Facilitate the market integration of renewable energy sources
- (6) Monitoring of trends in energy prices
- (7) Coordination between the federal government and the Laender
- (8) Further integration of the European Internal Energy Market

(1) Increase energy efficiency in all sectors

Energy efficiency in the german economy: So far, so good!

While the GDP increased 30% (since 1990), the primary energy consumption decreased for 6,8% (Temperature-corrected 10%) and the final energy consumption reduced 5%.

Source: Federal Ministry of Economics and Technology

Quelle: BMWi 2012

Increase energy efficiency in all sectors

Energy concept – Efficiency targets and Status Quo						
	2020	Status Quo				
Reduction of primary energy						
consumption	-20,0%	-3,5%				
Improvement of the Energy						
productivity (per annum)	2,1%	0,9%				
Reduction of heat required	-20,0%	-1,0%				
Doubling of the rate of						
modernisation	2,1%	0,9 - 1,3 %				

Development of primary energy consumption from 1990 till 2011 and targeted path till 2050

Energy efficiency in the building sector – high potentials

- Nearly 40 per cent of Germany's final ernergy consumption are consumed in the building sector
- With 19,6 Mio. housing units there is a huge potenital for increasing energy efficiency

Non-insulated buildings waste energy

- The strategic approach must be a combination of support and regulation:
 - Regulatory law sets high standards in cases, where it is technological and econimical feasible
 - Incentives for the energetic modernisation of buildings are set with support programms

- (1) Increase energy efficiency in all sectors
- (2) Developing energy infrastructure Electricity transmission grid and storage facilities

Developing the electricity transmission grid

Developing storage facilities

Status Quo:

- the current storage capacity in Germany ist circa 0,04 TWh
- existing storage facilities cover Germany's demand for electricity for about 30 minutes
- The necessary storage capacity is circa 10 TWh. This is 250 times of todays capacity.

- (1) Increase energy efficiency in all sectors
- (2) Developing energy infrastructure Electricity transmission grid and storage facilities
- (3) Supply security and grid stability

Supply security and grid stability

Federal Network Agency (BNetzA) in August 2011: 1.009 MW reserve capacity in Germany and 1.075 MW in Austria

- in Dezember 2011 for the first time an austrian reserve power station had to intervene
- Demand Response Management ("Verordnung Abschaltbare Lasten)

With a changing pattern of power generation, interference in the grid ist becoming necessary

- (1) Increase energy efficiency in all sectors
- (2) Developing energy infrastructure Electricity transmission grid and storage facilities
- (3) Supply security and grid stability
- (4) Preservation of Germany's industrial competitiveness

Preservation of Germany's industrial competitiveness

Compared to the european and the global level, the industrial electricity price is very high in Germany

High energy costs – What are the possible consequences?

Quelle: BMWi 2013.

- (1) Increase energy efficiency in all sectors
- (2) Developing energy infrastructure Electricity transmission grid and storage facilities
- (3) Supply security and grid stability
- (4) Preservation of Germany's industrial competitiveness
- (5) Facilitate the market integration of renewable energy sources

Facilitate the market integration of renewable energy sources

2013: forecasted feed-in-payment of 18,5 billion Euro stand vis-à-vis ca. 2,6 billion Euro revenues from sales.

Development of renewable energy sources – Costs

Promotion of renewables according to energy sources

Costs per MWh for all consumer for the contribution to the Renewable Energy Law in 2012 – Distribution according to energy sources

* EEG-Auszahlungen abzgl. Vermarktungserlöse abzgl. vermiedene Netzentgelte

Quelle: BDEW (eigene Berechnungen auf Basis der Prognose zur Berechnung der EEG-Umlage 2012 der Übertragungsnetzbetreiber vom 14.10.2011)

Quelle: BDEW Dezember 2011.

- (1) Increase energy efficiency in all sectors
- (2) Developing energy infrastructure Electricity transmission grid and storage facilities
- (3) Supply security and grid stability
- (4) Preservation of Germany's industrial competitiveness
- (5) Facilitate the market integration of renewable energy sources
- (6) Monitoring of trends in energy prices

State-induced burdens as an increasing component of the electricity price

The electricity price as an alarm signal

Average electricity price for a 3-person-household in ct/kWh (3.500 kWh/year)

Average electricity price for the Industry in ct/kWh

Quelle: Wirtschaftswoche März 2012.

- (1) Increase energy efficiency in all sectors
- (2) Developing energy infrastructure Electricity transmission grid and storage facilities
- (3) Supply security and grid stability
- (4) Preservation of Germany's industrial competitiveness
- (5) Facilitate the market integration of renewable energy sources
- (6) Monitoring of trends in energy prices
- (7) Coordination between the federal government and the Laender

Coordination between the federal government and the Laender

Renewable targets of the Laender

	Photovoltaik	Wind onshore	Wind offshore	Sonstige EE	Summe EE
Baden-Württemberg	8,0	4	0	1,8	13,8
Bayern	14,0	4,3	0	4,6	22,9
Berlin	0,2	0,1	0	0,2	0,5
Brandenburg	3,3	7, <mark>5</mark>	0	0,4	11,2
Bremen	0,0	0,2	0	0,0	0,2
Hamburg	0,0	0,1	0	0,2	0,3
Hessen	3,8	3,3	0	0,3	7,4
Mecklenburg-Vorpommern	0,5	3,5	3,5	0,4	7,9
Niedersachsen	3,7	14,2	12	1,2	31,1
Nordrhein-Westphalen	<mark>5,5</mark>	10,3	0	0,9	16 ,7
Rheinland-Pfalz	2,7	4,5	0	0,3	7,5
Saarland	0,7	0,5	0	0,0	1,2
Sachsen	1,0	1,6	0	0,3	2,9
Sachsen-Anhalt	1,5	6,0	0	0,3	7,8
Schleswig-Holstein	2,0	13	3	0,4	18,4
Thüringen	1,7	<mark>5,4</mark>	0	0,4	7,5
Deutschland gesamt	48,6	78,5	18,5	11,7	157,3

Quelle: Dena 2012

Coordination is necessary: pull together!

The renewable energy targets of the Laender exceed the ambitious ojectives of the federal government <u>60 per cent</u>!

- (1) Increase energy efficiency in all sectors
- (2) Developing energy infrastructure Electricity transmission grid and storage facilities
- (3) Supply security and grid stability
- (4) Preservation of Germany's industrial competitiveness
- (5) Facilitate the market integration of renewable energy sources
- (6) Monitoring of trends in energy prices
- (7) Coordination between the federal government and the Laender
- (8) Further integration of the European Internal Energy Market

European Perpective – Forecast für Europa 20xx

Résumé

- The transformation of the energy system has to be market-driven to become a succesfull project.
- A secure, clean and affordable energy supply is crucial for the future development and peformance of Germany and the European Union.
- Energy policy must at least have an european focus.
- Therefore, it is mandatory...
 - ...to complete the integration of energy markets to an European Internal Energy Market
 - ...to develop a consistent external energy policy on EU-level
- Vital challenges and chances are:
 - the further improvement of energy efficiency,
 - the development of energy infrastructure and,
 - a coordinated and economic feasible development of renewable energy sources on the european level.
- The further integration of european energy policy is crucial for the future success of Europe.

Thank you for your attention!

30 May 2013

