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While transportation accounts for 32% of the French greenhouse gas emissions, electrifying the
car fleet has become a crucial lever in order to decarbonize the sector and deliver on the French
and EU commitment to cut their greenhouse gas emissions by 55% by 2030. France is aiming for
15% of the private car fleet to be made up of electric vehicles by 2030, as compared to 1.2% today.

Yet, since EVs suffer from limited range and slow charging, as compared to internal combustion
engines (ICEs), it generates range anxiety among drivers. Consequently, the willingness to buy an
EV depends on the existence and accessibility of charging infrastructure. Consequently, a “chicken-
and-egg” problem arises: is the rise in demand for EVs at the origin of charging infrastructures
development or is the deployment of charging stations first the cause of EV demand? EV adoption
is thus characterized by indirect network effects, which can slow down the electrification of the car
fleet. Such characteristics have implications in terms of public policy: subsidies should indeed be
tailored to be efficient in such a context. Therefore, building on the “chicken-and-egg” literature,
I investigate whether, in France, from 2011 to 2022, building charging infrastructure had more
impact on EV adoption than EV adoption on the deployment of charging infrastructure. I also
investigate whether the effect is heterogeneous across time, space (rural v. urban areas) and level
of income of an area.

Working on comprehensive French data at the EPCI (“Etablissement Public de Coopération
Intercommunale“) level, which is seen since the 2019-“Loi d’Orientation des Mobilités” (LOM)
as the relevant entity to organize transportation services, I construct a panel dataset containing
quarterly EV registrations and the number of charging stations available by each quarter at the
EPCI level. To bypass the risk of having an endogeneity bias due to simultaneity, I use a 2SLS
approach. To quantify the effect of charging stations on EV demand, I construct an instrument
à la Bartik by interacting the number of supermarkets in an EPCI with the number of charging
stations in all EPCIs but the observed EPCI. To quantify the impact of the size of the EV fleet on
the deployment of charging stations, I use a set of past and current gasoline prices as instruments.

I find that, on average, a 10% increase in the number of charging stations led to a 11.8% rise
in quarterly EV registrations. Yet, I find this effect to be heterogeneous, as it is smaller in rural
areas: this suggests that rural drivers are less reliant on public infrastructure as they can more
easily recharge at home since they tend to live in houses, instead of apartments, as compared with
urban drivers. The effect is also smaller in low-income areas, suggesting that the budget constraint
may be the main limitation when it comes to buying an EV in these territories. Reversely, I find
no effect of EV adoption on the deployment of charging stations, suggesting that the building of
charging stations depends much more on local political willingness to subsidize such infrastructure
than on the local EV fleet.
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1 Introduction

While transportation accounts for 32% of the French greenhouse gas emissions, road transporta-

tion represents the vast majority of them (94%)1. More specifically, 54% of road transportation

emissions originate from passenger cars. As France aims to cut its greenhouse gas emissions by

55% by 2030, in line with the European Union “Fit for 55” package, speeding up the energy transi-

tion of the transportation sector appears to be crucial: the program entitled “France Nation Verte”

intends to reduce greenhouse gas emissions stemming from road transportation by 28 MtCO2eq by

2030, as compared to 2019.

To achieve such ambitious goals, electrifying the car fleet has become a central lever: the

Secrétériat Général à la Planification Ecologique is aiming for 15% of the private car fleet to be

made up of electric vehicles by 2030, as compared to 1.2% today. Yet, this issue calls for a more

fundamental question: how can EV adoption be quickly sped up?

Subsidies on EV purchases are the most widespread instrument used by policymakers throughout

the globe, which explains why a large part of the economic literature has been focusing on them.

The rationale behind their implementation (Rapson and Muehlegger, 2021) is not only that there

exist positive environmental externalities from driving an EV rather than a conventional vehicle, but

also that EVs exhibit higher upfront costs, which could discourage purchases, and that consumers

underestimate future fuel savings costs (Allcott et al., 2014).

Nevertheless, subsidising the deployment of both public and private charging infrastructure

has gained traction over the recent years. These tools have started to become studied by the latest

developments of the economic literature. The research question the latter tries to answer boils down

to a chicken-and-egg problem: is the deployment of charging points the source or the consequence

of EV adoption? Indeed, the EV market is fundamentally two-sided and exhibits indirect network

effects (Li et al., 2017; Meunier and Ponssard, 2020; Springel, 2021; Hagem et al., 2023). As a

consequence, subsidies on EV purchases should be evaluated with regards to their complementarity

1All the figures used in this section are those communicated by the Secrétariat Général à la Planification Ecologique
(French General Secretary for Ecological Planning) in 2023 : “La planification écologique dans les transports”.
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with subsidies on charging stations. This literature stresses the magnitude of range anxiety among

car buyers: it mostly finds that it is more effective to subsidize charging infrastructure deployment

first - which makes it possible to reduce range anxiety, and thus to speed up adoption - and only then

to complement them with subsidies on EV purchases, since subsidies on charging infrastructure

suffer from decreasing marginal returns.

Yet, this literature suffers from several limitations. First, since the boom of the EV market is very

recent, very few papers have investigated recent and on-going trends. This also explains why articles

from this literature often study plug-in hybrids and not EVs (Gallagher and Muehlegger, 2011),

even though these two types of vehicles exhibit different dynamics. Secondly, to our knowledge,

no causal study on indirect network effects has been carried out on French data. Last but not

least, spatial heterogeneity has generally been overlooked, whereas rural dwellers’ response may

differ from that of urban consumers. One key factor which should be of interest when wondering

whether to subsidize chargers or EVs first in rural areas, is the fact that, as country dwellers tend to

live in houses rather than apartments, they tend to have private parking space. Consequently, they

may favor charging at home rather than relying on public infrastructure2. In such a scenario, the

standard result of the literature - subsidizing chargers first - could fail.

That is why, using French data on charging stations and EVs from 2010 to 2022, I wish to

answer the following issues: what is the relative impact of deploying charging stations on EV

adoption, and of adopting EVs on the deployment of charging stations in France? Are these effects

heterogeneous across time, space and economic characteristics?

Section 2 reviews existing policies aimed at speeding up EV adoption in France. Section 3

offers a comprehensive review of the existing literature on EV-oriented policies. Section 4 describes

the data used. Section 5 presents the identification strategy used to tackle the “chicken-and-egg”

problem arising because of indirect network effects. Section 6 displays the results of the analysis

and Section 7 concludes.

2In all the following analysis, “public infrastructure” must be understood as charging infrastructure open to the
public. For instance, supermarket parking lots, though privately owned, are open to the public: thus they are included
in the definition.
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2 Policy background

Several national incentive schemes have been created to support EV adoption. As this study

focuses on the market of new electric passenger cars, only the relevant policy background is

presented.

First, there exists a wide range of subsidies on EV purchases, i.e. oriented towards the demand

side.

As the outcome of the “Grenelle de l’environnement” in October 2007, a bonus-malus scheme

was introduced: from 2008 to 2016, EVs were eligible to a purchase bonus up to e6,300, while

ICEs (internal combustion engines) emitting less than 130g of CO2 per kilometer were eligible

to a small purchase bonus. Reversely, cars emitting more than 160g of CO2 per kilometer were

subject to a small penalty. In 2016, the scheme became stricter: diesel cars were excluded from

the bonus scheme and hybrid vehicles as well as plug-in hybrid cars experienced a drop in the

purchase subsidies offered. The goal of such a policy was to quickly and clearly redirect subsidies

towards EV purchases. Throughout the years, the bonus-malus scheme has evolved to include

other characteristics which have an impact on CO2 emissions: roof rack, weight, etc. In 2022,

the closing year of the period studied in this paper, the so-called “bonus écologique” (“ecological

bonus”) could go up to e6,000 (capped at 27% of the purchase price), depending on the vehicle

characteristics (price, model, etc.).

In addition to this bonus-malus scheme, another well-known incentive device exists since 2015:

a “cash for clunkers” scheme (“prime à la conversion” also known as “prime à la casse”). In 2022,

drivers who wished to change from an ICE3 to an EV could get up to e5,000, depending on the

type of car bought and on their income.

More recently, in January 2024, the government launched a new program focused on low-

income households : the “electric social leasing” program. It enables low-income households to

rent an EV on a long-term contract basis for only e100 per month.

3In 2022, only diesel cars registered before 2011 and gasoline cars registered before 2006 were eligible.
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Secondly, even if they are less well-known from the general public, there exist subsidies on

the deployment of both public and private charging infrastructure. The national program entitled

“Advenir”, launched in 2016, delivers subsidies on the installation of charging stations. The amount

granted depends on the status of who is calling for the installation (citizens or firms for instance),

where it is installed and under which conditions4. In addition, installing charging points can be

eligible to tax credits. It is also subject to a reduced value added tax rate (5.5%) since 2014.

Finally, it is worth noting that only national subsidy programs were presented in this section.

Yet, there also exists a variety of local subsidies offered by some French regions, departments and

intercommunalities5. As they greatly differ across territories, summing them up here is impossible.

3 Literature Review

A large part of the literature regarding the EV market has been focusing on policies targeting

demand, since they are the most widespread. Yet, a part of it has also focused on the supply-side of

the market, by investigating for example the role of standards. Nevertheless, the most recent papers

have been focusing on the interactions between these two types of policies, especially regarding

the presence of indirect network effects in the EV market and its impacts on the design of optimal

policy.

3.1 Demand-Side Policies

Most existing EV incentives today are directed towards demand, under the form of subsidies.

The rationale behind them (Rapson and Muehlegger, 2021) is not only that there exist positive

4For instance, the amount granted is higher when an association of co-owners installs a shared charging point than
when a driver living in a multi-unit building installs a private, individual one.

5An intercommunality is a form of cooperation between nearby municipalities deciding to delegate some of their
powers to this new public entity, officially called “établissement public de coopération intercommunale” (EPCI).
Following several laws (MAPTAM law in 2014, NOTRe law in 2015 and LOM law in 2019), the powers of EPCIs have
been strengthened and extended. Notably, most EPCIs are now in charge of organizing local public transportation.
That is why the analysis is conducted in this paper at the EPCI level.
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environmental externalities from driving an EV rather than an ICE, but also that EVs exhibit higher

upfront costs which could discourage purchases, and that consumers underestimate future fuel

savings costs (Alcott et al., 2014). Thus, even acknowledging that implementing optimal Pigouvian

taxes on electricity and fuels was feasible, consumers would under-adopt EVs anyway because of

cognitive bias. Moreover, from a cost-effectiveness perspective, one would prefer concentrating

subsidies on agents who would not have bought an EV absent the reform, and not on those who

would have anyway.

3.1.1 Efficiency

Testing for a causal and positive impact of fuel-alternative subsidies on adoption is a research

question which has expanded in the 2010s and has been approached through three different perspec-

tives: do consumers respond to incentives? Does the design of the subsidy influence consumers’

response? Does the price of gasoline have an impact on the decision to buy an alternative-fuel

vehicle and is this impact more or less large than that of subsidies?

Albeit focused on hybrid cars and not EVs, the first seminal paper regarding this issue (Gallagher

and Muehlegger, 2011) uses quarterly, state-level sales data for eleven hybrid car models sold in

the U.S. from 2000 to 2006, to estimate a time- and state-model fixed effects, which shows that

monetary incentives have a positive impact on hybrid sales, albeit of unequal magnitude, conditional

on their design: sales tax waivers are ten times as effective as income tax credits and, on average,

gasoline prices have no significant effect.

This contradicts Diamond’s findings (2009) over the exact same period: while incentives

have poor impacts, a 10% rise in gasoline prices is estimated to lead to a 72% increase in state

hybrid market share. This opposition being essentially driven by the use of different data sources,

Diamond doesn’t rule out the possibility for efficient subsidies, since he attributes this lack of

significant impact to the time a consumer has to wait to get back the tax credit.

De facto, more recent studies claiming to build on Diamond’s work have demonstrated the

efficiency of such tax incentives. Jenn et al. (2018) take advantage of much more precise data to
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estimate three different specifications and find a significant and positive impact of incentives on

EV sales in the U.S., in line with Gallagher and Muehlegger (2011). They also add to the literature

by their third specification, a lagged-dependent model, which addresses simultaneity, the main

weakness of EV literature: do EV sales increase thanks to state subsidies or does the increasing

demand for EVs in some states encourage these states to implement incentives?

Yet, the jury is still out considering cost-effectiveness. Chen et al. (2021) put forth an overlooked

mechanism of the literature. Adopting a difference-in-difference setting in China, they highlight

that, if at first sight, subsidies boost EV sales, the policy actually generates a substitution effect

from highly fuel-efficient vehicles towards EVs: this mechanism raises the cost of the policy since

only the agents who already adopted satisfying vehicles actually choose to move to an EV. The

authors thus conclude that the program reduces social welfare.

3.1.2 Distributional Effects

Nonetheless, properly assessing any consumer subsidy program also requires a distributional

analysis. A consensus has arisen in the literature: uniform subsidy policies tend to be unfair.

In line with Allcott et al. (2015) who find that energy efficiency subsidies are first and foremost

taken up by wealthier and better informed agents, Borenstein and Davis (2016) show this result

holds for EV subsidies: the top income quintile received 90% of the EV tax credit scheme studied.

In line with these findings, Fournel (2023) estimates a structural model and conducts a cost-

benefit analysis on a Canadian subsidy program: even if it led to a 93% increase in EV adoption,

half of the subsidies is captured by agents who would have bought an EV even absent the program.

Those agents being wealthier on average, Fournel envisions targeting such policies under a certain

income threshold. Nevertheless, in this case, efficiency and equity are not aligned: he finds that a

“cash for clunkers” program would be more effective to speed up EV adoption at a lower cost.

However, if structural estimation can be useful to estimate the impacts of one-size-fits-all

subsidy policies, quasi-experimental approaches seem more appropriate to estimate the effects of

income-targeted subsidies: indeed, very few articles exist on this issue in the literature, thus little
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is known about the demand elasticity of low- and middle-income consumers. Yet, it has become a

very active field of research since the landmark paper written by Muehlegger and Rapson (2022).

Taking advantage of a quasi-experimental setting in California following the implementation of an

EV subsidy program specifically targeting the low- and middle-income consumers, they conduct a

matched difference-in-difference and a triple-difference: this state-of-the-art econometric approach

enables them to find the first precise estimates of EV subsidy responsiveness of households ranked

at the bottom of the income distribution. The authors show that, surprisingly, they are quite

responsive: a subsidy decreasing the buy-price of EVs by 10% increases demand by 21%.

3.1.3 When Efficiency and Equity Meet

Yet, Muehlegger and Rapson (2022) don’t delve into the issue of cost-effectiveness. Thus,

considering Fournel’s results, does that mean efficiency and equity are irreconcilable?

Being increasingly studied in these last few years, the recent answers given are a clear “no”.

Estimating a vehicle choice model based on representative American car buyers in 2015, Sheldon

and Dua (2019) show that cost-effectiveness could actually be doubled if subsidies were targeting

the consumers who wouldn’t have bought an EV absent the incentives: low-income or rural car

buyers for instance. Reconciling efficiency and equity, they also underline that it could increase

social and political acceptability of EVs. Similar results are found by Xing et al. (2021) who

conclude that current federal tax credit program increased EV sales but that 70% of them were

captured by consumers who would have bought an EV anyway, whereas providing larger subsidies

to low-income households would have been both more cost effective and more progressive. This

leads Joshua Linn (2022) to conclude that there is no trade-off between efficiency and equity,

conditional on targeting low-income households and taking into account interactions of subsidies

with other policies: income-based subsidy is found to be 40% more effective than other schemes.

3.2 Supply-Side policies

If the majority of policies implemented are oriented towards demand, through subsidy programs,
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speeding up EV adoption entails to use all available levers, including those affecting supply

constituted of car manufacturing and charging infrastructures. Interestingly, the main supply-

oriented policies implemented by governments - and studied by the literature - are based on

standards.

3.2.1 Standards

Non-monetary incentives have been widely used by governments to act on carmakers, may it be

directly or indirectly. In the US, two main supply-side efficiency standards exist: the Zero Emission

Vehicle (ZEV) and the Corporate Average Fuel Economy (CAFE) (Rapson and Muehlegger, 2021).

ZEV sets manufacturer-level targets for ZEV sales while CAFE sets fuel-efficiency norms.

However, the effects of such standards have been challenged by the economic literature from

the start, as economists usually consider price instruments to be more efficient and less costly.

In line with Austin and Dinan (2005) who find gasoline taxes would have saved more gasoline

and at a lower cost, Jacobsen (2013), using a representative car producer, concludes that CAFE

exhibits poor cost-effectiveness and, more importantly, raises equity issues from two standpoints:

(1) because of heterogeneity between firms, some being exempted, the costs are mainly supported

by domestic firms; (2) because it also increases car prices on the secondary market (used cars),

low-income households are largely negatively impacted.

If standards ought to be considered carefully for efficiency and equity reasons, the particular

case of EVs though makes them more useful than in the standard economic theory. Estimating a

structural model, Jing Li (2023) shows that unifying incompatible charging standards into a uniform

standard would lead to a 4.3% increase in EV sales in the US between 2011 and 2015 while also

considerably increasing consumer surplus.

3.2.2 Carmaking Innovation

The rationale for supply-side policies is partly based on the acknowledgment that demand

subsidies aren’t efficient enough in quickly speeding up EV adoption: predicting the future market
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share of EVs in the U.S. from 2020 to 2035, Archsmith et al. (2021) highlight that “the first $500

billion in cumulative nationwide EV subsidies is associated with a 7-10% increase in EV market

share in 2035” only, in addition to having decreasing returns. The authors stress that non-monetary

factors, such as car quality and range limitation, are crucial in stimulating demand, reinforcing

the need for technology improvement. Since then, this idea has been empirically documented:

Forsythe et al. (2023) demonstrate that technology improvement is the force which has driven the

increase in EV share in the US in recent years, in particular the improvement in range limitation (the

average range of BEVs has increased by 200%), fast-charging capabilities and operating costs. The

authors show that innovation made possible to compensate EVs perceived flaws from the consumer

perspective and predict that expected innovation should lead consumers to be willing to pay up to

a $8,000 price premium to buy an EV over a conventional car.

Those conclusions identify an important driving force of EV adoption but don’t state how to

efficiently support innovation in this type of industry. A less recent literature has addressed this

issue by working more generally on energy-saving technological change and showed that such

innovation was encouraged by higher fossil energy prices and stricter standards (Newell et al.,

1999). Building on it but focusing on EVs, Knittel (2012) finds a significant positive relation

between rising prices and rising CAFE standards and annual technological progress for cars. Klier

and Linn (2016) go further by using cross-sectional variations in the stringency of the standards

and fixed effects to control for confounding factors: increasing stringency led to a faster rate of

adoption of new technologies by car manufacturers.

3.2.3 Charging Infrastructure Development

The other side of supply on the EV market, charging infrastructure, has been shown to be

the most crucial dimension of supply to speed up EV adoption because of the extent of drivers’

range anxiety (Springel, 2021). The extensive analysis of Schulz and Rode (2022) conducted

between 2009 and 2019 in Norway, a country where 90% of the annual sales are made up by

EVs, both shows that developing a wide network of chargers is efficient in stimulating demand and
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can respond to equity concerns. Using an event study setting, they use a difference-in-difference

approach following the state-of-the-art method of Callaway and Sant’Anna (2021) to estimate the

effect of a municipality getting its first charger on EV adoption. They find a robust, significant and

strong positive effect on local electric vehicle ownership rate, which increases by 200% over five

years. An interesting complement to this analysis is that of Neaimeh et al. (2017) which underlines,

in the US and UK contexts, that the type of charger also matters much: fast chargers have a stronger

effect.

3.3 Policies Interactions

So far, we have shown that demand- and supply-side policies could be, depending on their

design and on the context, both efficient and equitable in speeding up EV adoption. The latest

developments in the literature have focused on the interactions between these different policies.

Taking them into account can greatly change the outcome.

3.3.1 The Need for Studies of Policies Interactions

The need for studying interactions stems from both efficiency and equity concerns.

From an efficiency standpoint, Gillingham et al. (2021) give an important example of issues

arising when policies interact with each other. Studying the interaction between carbon pricing

and EV adoption policies, the authors show that in the U.S., under moderate carbon prices, the

benefits from carbon emissions reduction thanks to EV adoption would be reduced. Indeed, in a

country such as the U.S. where electricity generation is highly based on fossils, a larger adoption of

EVs would lead to an increase in electricity demand which, under moderate carbon pricing, would

be met by coal generation pushed up to the margin. This would also lead to slowing coal plants

retirements. Using historical data, the authors demonstrate that such mechanisms actually occurred

in several regions. Surprisingly, this means that benefits from EV adoption would be higher under

no carbon price or high carbon price than under a moderate carbon price.

From an equity perspective, interactions between EV subsidy programs and other policies, espe-
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cially standards, change the trade-off between equity and effectiveness. Linn (2022) demonstrates

that income-based subsidies make it possible to preserve the progressivity of the system overall,

even when interacted with ZEV standards: while the latter is likely to be regressive because it

decreases prices of EVs when high-income individuals are more likely to buy EV, income-based

subsidies make it possible to counteract this effect.

3.3.2 The “Chicken-and-Egg” Issue

Even if there have been few studies on policies interactions until then, one specific interaction

has been particularly investigated: subsidies to EV consumers v. subsidies to charging infrastructure

development. The EV market is a two-sided market with important indirect network effects: the

willingness to buy an EV depends on the existence and accessibility of charging infrastructure.

Consequently, a “chicken-and-egg” problem arises: is the increased demand for EVs at the origin

of charging infrastructures development or is the deployment of charging stations first the cause of

EV demand? What should be subsidized first and foremost?

The theoretical building blocks of the study of these policies interactions can be found in Meunier

and Ponssard (2020) who consider a static partial equilibrium model with indirect network effects.

They conclude that the optimal policy would be to subsidize both charging stations and EVs because

the existence of indirect network effects can lead to getting stuck in the Pareto-dominated market

equilibrium.

These theoretical findings have since then been empirically investigated. The very first seminal

paper doing so (Li et al., 2017) finds evidence of pretty large indirect network effects and rec-

ommends to subsidize charging infrastructure deployment first as it is more cost-effective: a 10%

increase in the number of public charging stations (respectively, in the stock of EV) would lead to

an 8% increase in EV sales (respectively, a 6% increase in charging station deployment).

Since then, recent papers have built on this landmark study. For instance, Springel (2021), whose

study has become a reference, addresses the same research question but adds to the literature by

estimating a structural model based on a simultaneous-move game where, in each period, consumers
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and stations make decisions under complete information. Applying the study to comprehensive

Norwegian data, she confirms Li et al.’s (2017) results: station subsidies were more than twice as

effective as price subsidies in Norway between 2010 and 2015. Yet, she also adds to the literature by

showing that such subsidies exhibit decreasing marginal gains, hence the need for demand subsidies

thereafter. Those results are now getting traction within the literature: Hagem et al. (2023), by

calibrating and estimating a numerical model for Norwegian abatement policies, also highlight that

governments should start by subsidizing stations even if they exhibit higher marginal abatement

costs because such a policy increases EV adoption in the long run and not only in the few following

years.

3.4 Ramifications

This review has exhibited too main take-aways regarding how to speed up EV adoption. First,

whereas EV incentives are usually divided by policymakers into incentives targeting either demand

or supply, an efficient policy should act on both of them, by taking into account their interaction,

which is all the more important on the EV market as it exhibits indirect network effects. Secondly,

EV incentives are not neutral: their distributional effects should always be carefully monitored,

even more so if policymakers aim to increase the acceptability of energy transition policies.

Yet, this review has also shown how small the empirical literature on the “chicken-and-egg”

issue regarding the EV market is. Indeed, it is mainly the U.S. and Norwegian contexts which

have been studied until then. Moreover, papers have studied distant periods which correspond to

the beginning of car fleet electrification. Hence, as Glachant (2021) puts it: “Many consumers

purchasing EVs during that period are likely to be early adopters who are less price sensitive than

the general car-buying population. The extent to which these estimates scale and their applicability

in other market contexts is an area that would benefit from addition empirical research”. This is

what the following analysis tries to accomplish, regarding the French context.
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4 Data

Building on this “chicken-and-egg” literature, we aim to address some of its limitations. First,

to our knowledge, no paper has ever studied this issue in the French context. Secondly, many papers

in this literature study plug-in hybrids instead of EVs, whereas these two types of vehicles have

different dynamics. Finally, Li et al.’s seminal paper (2017) uses U.S. data from 2011 to 2013 : not

only is it a short period, but also the situation has evolved a lot and very quickly since 2013, with an

increase in both the number of charging stations and of EV sales. In addition, the paper delivers an

analysis at the Metropolitan statistical Area (MSA) level : this is a large and urban aggregate - e.g.

the New York MSA encompasses more than 12,000 km2 and 20 million inhabitants. Thus, this may

not be the most relevant aggregate to study consumers’ behavior and geographical heterogeneity.

Consequently, I work on comprehensive French data from 2011 to 2022 at the EPCI (“Etab-

lissement Public de Coopération Intercommunale”) level, which is seen since the 2019-“Loi

d’Orientation des Mobilités” (LOM) as the relevant entity to organize transportation services.

4.1 Data Sources

I use two main data bases to construct a panel dataset containing quarterly EV registrations and

the number of charging stations available by each quarter at the EPCI level, from 2011 to 2022, in

hexagonal France (i.e. France without Corsica and overseas territories). The final panel dataset

consists of 987 EPCIs, out of the 1213 EPCIs existing in hexagonal France in 2022, due to lacking

data regarding charging stations in some EPCIs.

The first dataset, built upon data from the “Ministère de la Transition Ecologique et de

la Cohésion des Territoires”6 which are based on data from the “Agence Nationale des Titres

Sécurisés” (ANTS7), contains the number of quarterly registrations of new cars, including electric

passenger cars, in each French municipality from 2011 to 2022. It also gives the number and nature

6French Ministry for the Green Transition and Territorial Cohesion.
7The ANTS is a French administration taking care of the edition of official papers, such as passports and car

registration documents.
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of the cars making up the fleet, yearly. To run the regressions, I only keep electric passenger cars

used by private individuals (as opposed to professionals8). Based on the Insee9 municipality code10

and the EPCI code, I am able to match municipalities to the EPCI they were attached to on January

1, 2022, thanks to the table of correspondence offered by BANATIC11.

The second dataset used is an open data base displaying information about available public

charging stations in France : the “répertoire national des Infrastructures de Recharge pour les

Véhicules Electriques” (IRVE). It is published by transports.data.gouv, a “State startup” (“startup

d’Etat”) created on the initiative of the interministerial direction of digital technology (DINUM,

“Direction interministérielle du numérique”) and placed under the supervision of the “Ministère

de la Transition Ecologique et de la Cohésion des Territoires”.

As it is an open dataset, it requires much data cleaning. Using the version published on March 9,

2024, it first displays 90,177 stations. Yet, the commissioning date is often missing, while necessary

to pursue the analysis: thus, filtering out observations without proper date, 63,618 stations are left.

Some dates are outliers (e.g. year 1920 or 1970 for the building of a station). In addition, since the

risk of having errors in the dates before 2010 is high and since the number of such observations

is negligible, I remove stations built before 2010. Moreover, since the analysis runs from 2011 to

2022, I remove stations built after 2022. Then, as it is difficult to assign charging stations built

on highways to a specific municipality (and thus, to an EPCI) and since it is unlikely that drivers

pay the highway toll to get their EV charged on a daily basis, I remove such stations. Filtering

for all of this, there are 37,139 stations left. However, many of these observations are actually

duplicates: thanks to their address, I remove such duplicates. In the end, there are 11,824 stations

8I exclude electric cars bought by professionals because they may adopt different behaviors: for instance, it is very
likely that they charge their car on their workplace, with chargers not being open to the general public. They may even
leave their car there at night. These different behaviors could have biased the results.

9“Institut national des statistiques et des études économiques” (French national statistics institute).
10The Insee municipality code is different from the zip code. It is uniquely attached to each municipality, while

several municipalities can have the same zip code.
11BANATIC, “Base nationale sur l’intercommunalité”, is the national information system collecting data

regarding intercommunalities (EPCIs), developed by the “Direction générale des collectivités territoriales”
(DGCL), a department of the French Ministry of Internal Affairs (“Ministère de l’intérieur”). URL:
https://www.banatic.interieur.gouv.fr/V5/a propos/banatic.php.
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registered which can be worked on. Out of these 11,824 stations, 3,823 observations display an

unchecked Insee municipality code or location. Therefore, I extract for each of these addresses the

string which is the most likely to correspond to the municipality name. Then, I check by hand the

names (orthography, homonyms, etc.), which then enables me to match these previously unchecked

stations to EPCIs. In the end, I work on 11,824 stations spanning 987 EPCIs.

Note that all the following analysis is run at the charging station level, not at the charging

point level. Indeed, it appears in the data that the registered number for charging points is not

standardized. Some service providers seem to understand it as the number of charging terminals

within a station, while others register the total number of plugs there are on the charging terminals

of the station. Moreover, several typing errors can be identified in the number of charging points

registered: the number is sometimes artificially high even in very small towns. It seems also that

the error is non-random as some regions are more subject to it. Checking such high numbers on

specialized websites such as “Chargemap”, it appears that they are indeed mistakes. Consequently,

to avoid both of these issues, I work on a more robust indicator : the number of stations per EPCI.

For several reasons, I suspect the results would not be very different if one used clean charging

points data.

First, if the charging points data set I have is not too distorted, one can see on Figure 1 that most

stations have the same number of charging points : two or three. The distribution is indeed right

skewed. This would be coherent with the numbers communicated by Avere-France (“Association

nationale pour le développement de la mobilité électrique”)12: the association concluded that at

the end of 2022, there were 30,352 charging stations and 82,107 charging points in France, which

gives a mean of 2.7 charging points per station13.

12Avere-France is the National Association for the Development of Electric Mobility, created in 1978 to gather and
represent professionals working in this sector. The numbers published by the association each month are considered
as very reliable and are regularly used by officials and newspapers.

13Avere-France, January 2023, “Baromètre national des infrastructures de recharge ouvertes au pub-
lic”, URL: https://www.avere-france.org/publication/barometre-82-107-points-de-recharge-ouverts-au-public-fin-de-
cembre-2022/.

15

https://www.avere-france.org/publication/barometre-82-107-points-de-recharge-ouverts-au-public-fin-decembre-2022/
https://www.avere-france.org/publication/barometre-82-107-points-de-recharge-ouverts-au-public-fin-decembre-2022/


Secondly, it can be argued that what drives a local upsurge in EV sales is really the change

stemming from having no charging point installed at all to getting one charging point installed. To

put it differently, the first charging point is the one generating the main effect: recent literature

(Springel, 2021) has shown that charging points exhibit decreasing marginal returns. In addition,

seeing suddenly a charging point installed in public space is likely to acculturate drivers to EVs, as

well as to reduce their range anxiety, and thus to convince them to take the plunge and buy an EV.

Figure 1: Density of the number of charging points according to the dataset used

Notes: This graph draws the density of the number of charging points per station in 2022 in the data set used. Note
that descriptive statistics give that the minimum is equal to 1, the first quarter and median to 2, the third quartile to 3
and the maximum to 505. The mean is equal to 3.289.

Finally, in the EV demand equation, the number of supermarkets is needed to construct the

instrumental variable à la Bartik. I find such data thanks to OpenStreetMap.

4.2 Descriptive Statistics

Figure 2 depicts the evolution of the number of new passenger cars registrations between 2011

and 2022. First, the constant decline of diesel-powered cars since 2011 is absolutely striking:
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in 2022, there were fewer registrations of diesel cars than of EVs. This drop is partly due to

the introduction of stricter environmental standards14, improvement of petrol-powered cars, and

scandals, such as the “Dieselgate” in 2015 with Volkswagen. Secondly, one can see on the graph

that petrol cars may have benefited from the drop in diesel cars at the beginning, as the number

of registrations went up until 2018. Thereafter, as of 2019, registrations of petrol-powered cars

started falling sharply. Thirdly, if the important drop in 2020 was partly driven by the global Covid-

19 pandemic, the graph shows an interesting pattern: the number of EV registrations increased

significantly as of 2020, the very same year as the pandemic, and kept increasing thereafter. Thus,

this first graph seems to suggest a new trend in consumers’ behaviors.

If the share of EVs in the total car fleet remains very small (Figure 3) as the surge in EV sales

is quite recent, Figure 4 shows that the increasing trend of EV ownership has closely followed the

shape of the upward trend of the number of charging stations installed.

14Recently, such environmental standards have consisted in, for instance, the EU announcement of a ban on ICEs
as of 2035 and the introduction of low-emission zones. In France, in 2019, the LOM act made it compulsory for
EPCIs with air quality higher than the official norms to introduce low-emission zones (“Zones à Faibles Emissions”).
Although the schedule has been modified several times, it was made clear that old diesel cars would eventually be
forbidden in city centers. URL: https://www.ecologie.gouv.fr/politiques-publiques/zones-faibles-emissions-zfe.

17

https://www.ecologie.gouv.fr/politiques-publiques/zones-faibles-emissions-zfe


Figure 2: Evolution of New Passenger Car Registrations from 2011 to 2022 in France

Notes: This graph draws the number of registrations of new passenger cars used by private individuals from
2011 to 2022, in hexagonal France (without Corsica and overseas territories). Only diesel- and petrol-powered
cars, as well as electric cars, are depicted. In the Appendix, Figure 11 draws the number of registrations of
new passenger cars used by private individuals and professionals, in France, including Corsica and overseas
territories.

Figure 3: Evolution of the Passenger Cars Fleet from 2011 to 2022 in France

Notes: This graph draws the evolution of the passenger car fleet (used by private individuals) from 2011 to
2022, in hexagonal France (without Corsica and overseas territories). The number of cars given for each year
corresponds to the number of cars in the French fleet on December 31 of each year.
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Figure 4: Evolution of the Passenger Electric Car Fleet and of Charging Station Infrastructure from
2011 to 2022 in France

Notes: This graph draws the evolution of the electric passenger car fleet (used by private individuals) along that of the
installed base of charging stations, from 2011 to 2022, in hexagonal France (without Corsica and overseas territories).
The number of cars given for each year corresponds to the number of cars in the French fleet on December 31 each
year.

Table 1 and Table 2 present summary statistics for variables either used in the regressions or
relevant to describe the structure of the 987 EPCIs included in the dataset. All the variables, except
the car and EV stock and the number of supermarkets, are taken from Insee 2021-census data.

Note that the EPCI having both the smallest amount and share of electric passenger cars in 2022
was the CC15 Pays Gentiane, an EPCI located in Cantal, Auvergne-Rhône-Alpes: this EPCI can be
considered as very rural, as there were only 6,572 inhabitants and 14.3 people per km2 in 2021,
according to Insee.

In contrast, the Métropole du Grand Paris, the EPCI gathering together Paris with its 130
suburban municipalities, is the EPCI with the largest EV fleet, with 11,427 electric passenger cars,
used by private individuals. Yet, the share of EVs there is only 0.5%: this is not surprising as the

15“Communauté de communes”: it is one of the possible forms taken by EPCIs, along with “Communauté
d’agglomérations” or “Métropoles” which are bigger entities.
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capital city area is where the number of cars is also the largest.

In the EV demand equation and the supply equation, the EPCI with the highest share of EVs
(2.7%) in 2022 was the CC Gally Mauldre, in Yvelines, Île-de-France. It is much less densely
populated than the Métropole du Grand Paris but much more densely populated than CC Pays
Gentiane, with 235.5 people per km2 and 22,336 inhabitants.

To get a quick overview of the correlation between the variables selected in the summary
statistics tables and the share of EVs in 2022, I run a naive OLS on the data of that year. I estimate:

𝑠ℎ𝑎𝑟𝑒𝐸𝑉𝑒 = 𝑙𝑛(𝐷𝑒) + 𝑙𝑛(𝐼𝑒) + 𝑙𝑛(𝑆𝑒) + 𝜀𝑒

where 𝑠ℎ𝑎𝑟𝑒𝐸𝑉𝑒 is the share of EVs in the total car fleet in 2022 in EPCI 𝑒, 𝐷𝑒 is the population
density in EPCI 𝑒, 𝐼𝑒 is the median equivalized disposable income in EPCI 𝑒 and 𝑆𝑒 is the total
number of charging stations existing in EPCI 𝑒 in 2022. Table 3 underlines that a higher population
density, median equivalized disposable income and total number of stations, are correlated with a
higher share of EVs: hence, according to this naive regression, a typical EPCI with a high share
of EVs would be an urban, rich and well-equipped EPCI. These patterns are thus investigated
geographically in Section 4.3.

Table 1: Summary Statistics for Relevant Variables regarding the EV Demand Equation

Min. Q1 Median Mean Q3 Max.

Population 3,983 16,953 28,124 64,554 54,387 7,144,932
Population density 6.30 36.64 75.16 178.45 154.85 8,703.35
Car stock by 2022 2,659 11,084 17,748 35,332 34,425 1,944,629
EV stock by 2022 7 60 124 256.9 253 11,427
Number of charging stations by 2022 0 2 5 10.58 11 1,097
Median equivalized disposable income 17,560 21,340 22,310 22,759 23,450 40,320
Share of houses in principal residences 13.01% 69.15% 82.40% 77.59% 90.65% 98.22%
Number of supermarkets 1 3 6 12.37 12 906

Notes: This table provides summary statistics for variables which are relevant regarding the EV demand equation.
The statistics include the minimum (Min.), first quartile (Q1), median, mean, third quartile (Q3), and maximum (Max.)
values for each variable. All variables are measured at the EPCI level. These statistics are calculated from observations
used in the EV demand regression, whose results are available in Section 6.1: thus, these statistics are calculated over
45,167 observations.
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Table 2: Summary Statistics for Relevant Variables regarding the Charging Station Equation

Min. Q1 Median Mean Q3 Max.

Mean fuel price in the last quarter 0.9825 1.2883 1.4187 1.4118 1.4806 2.2189
Mean fuel price in current quarter 0.9825 1.2885 1.4226 1.4206 1.4860 2.2189
Mean fuel price one year ago 1.067 1.275 1.400 1.372 1.467 1.834
Mean fuel price two years ago 1.046 1.247 1.348 1.344 1.453 1.738
Mean fuel price three years ago 1.046 1.240 1.347 1.340 1.453 1.738
Population 4,870 17,597 28,316 65,635 55,202 7,144,932
Population density 6.30 37,44 75.81 181,26 157.09 8,703.35
Car stock by 2022 2,659 11,084 17,748 35,332 34,425 1,944,629
EV stock by 2022 7 63 127 261.2 258 11,427
Number of charging stations by 2022 0 2 5 10.73 11 1,097
Median equivalized disposable income 17,560 21,360 22,330 22,762 23,450 40,320
Number of supermarkets 1 3 6 12.37 12 906

Notes: This table provides summary statistics for variables which are relevant regarding the charging station
equation. The statistics include the minimum (Min.), first quartile (Q1), median, mean, third quartile (Q3), and
maximum (Max.) values for each variable. All variables are measured at the EPCI level. These statistics are calculated
from observations used in specification (3) of the charging station equation, whose results are available in Section 6.2:
thus, these statistics are calculated over 43,861 observations.

Table 3: Naive OLS on data of the year 2022

Dependent variable:
Share of EVs

log(population density) 0.0004∗∗∗
(0.0001)

log(median equivalized disposable income) 0.029∗∗∗
(0.001)

log(total number of stations) 0.0004∗∗∗
(0.0001)

Constant −0.281∗∗∗
(0.010)

Observations 987
R2 0.542
Adjusted R2 0.540
Residual Std. Error 0.003 (df = 983)
F-statistic 387.4 (df = 3; 983)

Notes: *** 𝑝 < 0.01, ** 𝑝 < 0.05, * 𝑝 < 0.1. Clustered (EPCI) standard-errors in parentheses.
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4.3 Geographical Patterns

Figure 5 tends to show that the EV fleet is unequally distributed on the French territory. Of
course, comparing only the installed base can be misleading because of the difference in population
across EPCIs. Yet, Figure 7 seems to confirm this assessment. The share of EVs tends to be
higher around large urban areas, like Marseille, Toulouse, Lyon and Strasbourg. Interestingly, the
Métropole du Grand Paris has the largest installed base of EVs but is “only” in the third quartile.
Its suburbs though tend to be in the fourth quartile: it could likely be due to commuters driving
their car to work inside Paris while living outside the metropolis.

In addition, Figure 6 shows that, according to the open dataset used in this study, there is an
unequal coverage in charging stations in France, urban areas hosting a larger number of charging
stations. This goes into the direction of the existence of a positive correlation between the number
of charging stations and the number (and share) of EVs.

To dig this question a bit deeper, Figure 8 creates a metric to assess the availability of charging
infrastructure in the EPCIs studied: dividing the EV fleet of each EPCI by the number of existing
charging stations there, one gets the number of EVs per station. The higher this number, the fewer
charging stations are available. Interestingly, while urban areas like Paris or Toulouse seem to have
a high degree of station availability and a high share of EVs (Figure 7), it looks like some rural
areas have a small share of EVs, despite being rather well equipped. This raises the issue of spatial
heterogeneity: does building a charging station in a rural and urban areas have the same effect?

Finally, Figure 9 and Figure 10 point out the spatial pattern of the deployment of charging
stations and of EV sales from 2011 to 2022. First, before 2017, the number of charging points
was very low; secondly, charging stations were initially deployed around big cities, like Paris and
Marseille, and in Poitou-Charentes as a consequence of the voluntaristic policies implemented by
the politicians of the time in this region. The EV sales seem to follow the same pattern, with sales
being first driven by cities.
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Figure 5: Geographical Distribution of the Installed Base of EVs in 2022

Notes: This map represents the installed base (stock) of electric passenger cars used by private individuals (EPCI
level), on December 31, 2022. It is not restricted to the 987 EPCI used in the regressions.
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Figure 6: Geographical Distribution of the Installed Base of Charging Stations in 2022

Notes: This map represents the installed base (stock) of charging stations (EPCI level), which are registered in our
database after data cleaning, on December 31, 2022.
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Figure 7: Share of EVs in the Total Car Fleet in 2022

Notes: This map represents the share of electric passenger cars, used by private individuals, in the total passenger car
fleet, used by private individuals in France (on December 31, 2022, EPCI level). It is not restricted to the 987 EPCI
used in the regressions.
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Figure 8: Number of EVs per Charging Station in 2022

Notes: This map represents the number of electric passenger cars used by private individuals per charging station (on
December 31, 2022, EPCI level). When the indicator gets higher, the number of cars per charging station grows. Thus,
it can be seen as a measure of the availability of charging stations: the higher the indicator, the fewer charging stations
are available.
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Figure 9: Geographical Evolution of Charging Stations Installation from 2011 to 2022
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Figure 10: Geographical Evolution of EV Registrations from 2011 to 2022

5 Empirical Strategy

Because of its structure, the EV market can be seen as a two-sided market exhibiting network
externalities. These network effects are indirect: because of limited range and slow charging,
the marginal utility derived from driving an EV depends on the availability of public charging
stations. The existence of positive indirect network effects is precisely what creates a “chicken-
and-egg” issue and thus may slow down EV adoption. Indeed, on the one hand, if the number of
charging stations increases, range anxiety reduces, leading to more EV purchases: drivers value
the existence of public charging infrastructure. On the other hand, building charging infrastructure
requires massive financial investments, which can only be amortized if the EV fleet gets large
enough. Therefore, building more charging stations can stimulate demand for EVs but increasing
the share of EVs in the car fleet can stimulate the building of charging stations.

Then, the immediate question arising is: which effect is bigger? Indeed, it has policy ramifica-
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tions: which side should be subsidized first or more heavily? This entails to quantify the intensity
of the network effects on both sides of the market. Yet, this issue becomes non-trivial when it
comes to econometrics: the “chicken-and-egg” problem leads to a simultaneity or reverse causality
issue, hence an endogeneity bias in absence of a proper identification strategy.

Building on Li et al. (2017), I perform a reduced form estimation using an instrumental variable
(IV) strategy for each side of the market. On the one hand, the “EV demand equation” aims to
capture the intensity of the indirect network effects from charging infrastructure on EV demand.
On the other hand, the “charging station equation” identifies the effect of the size of the EV fleet
on the building of charging stations.

5.1 EV Demand Equation

Using quarterly electric passenger car registrations data from 2011 to 2022 and denoting 𝑒 the
EPCI in which the EV is registered and 𝑡 the year and quarter, the demand equation writes:

ln(𝑟𝐸𝑉𝑒𝑡 ) = 𝛽0 + 𝛽1ln(𝑁𝑒𝑡) + 𝑇𝑡 + 𝛿𝑒 + 𝜀𝑒𝑡

where 𝑟𝐸𝑉𝑒𝑡 stands for the registrations of electric cars in EPCI 𝑒 and year-quarter 𝑡, 𝑁𝑒𝑡 represents
the number of public charging stations built in EPCI 𝑒 by year-quarter 𝑡. 𝑇𝑡 denotes year-quarter
fixed effects, controlling for time-varying national trends, i.e. shocks being common to all the
EPCIs studied, such as, for instance, the development of environmental information aimed at
the consumers. The fixed effect 𝛿𝑒 controls for time-invariant EPCI characteristics, such as its
geographical situation (e.g. a mountainous situation, which could have an impact on the willingness
to buy an EV). 𝜀𝑒𝑡 recovers the unobserved variations.

Yet, simply estimating this equation would not settle the issue of reverse causality: 𝑁𝑒𝑡 is still
endogenous as it could be correlated with 𝜀𝑒𝑡 due to simultaneity. To purge the results from any
endogeneity bias, I use an IV strategy. It requires to find a variable correlated with the number
of public charging stations 𝑁𝑒𝑡 (relevance condition) but not with EV registrations 𝑟𝑒𝑡 (exclusion
restriction).

Consequently, following Li et al. (2017), I choose an instrument à la Bartik. Coming from
the literature of labor economics, an instrument à la Bartik consists in interacting two variables:
one captures national shocks, the other is a local variable manifesting the fact that territories16

16In the original book (Bartik, 1991), the local variable is the local industry employment shares, while the national
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have a differential exposure to these national shocks. In the present case, I interact the number of
supermarkets in each EPCI 𝑆𝑒 with the number of charging stations in all EPCIs but EPCI 𝑒, lagged
by a quarter : 𝑆𝑒 × 𝑁−𝑒, 𝑡−1. Indeed, grocery stores tend to install charging points in order to attract
new consumers (Arlt et Astier, 2023). Therefore, the two variables should be correlated. Reversely,
considering the set of fixed effects included in the equation, there is no credible mechanism through
which the number of supermarkets would impact the consumer decision to buy an EV. Since such
a variable doesn’t include any variation, I introduce time variation by interacting it with the lagged
number of charging stations in all EPCIs but the one in which the studied grocery stores are located.
To put it in a nutshell, this instrument à la Bartik is built upon the following idea: the lagged number
of charging stations captures the national trend in charging infrastructure development (namely, a
national policy aiming to expand the charging infrastructure) but this trend has a stronger effect
on EPCIs where there are more supermarkets, since grocery stores are willing to install charging
stations to attract more consumers. The supermarket variable thus captures the local exposure to
the national shock.

5.2 Charging Station Equation

Using similar notations, the supply equation writes:

ln(𝑁𝑒𝑡) = 𝛾0 + 𝛾1ln(𝑅𝐸𝑉
𝑒𝑡 ) + 𝛾′2𝑍𝑒𝑡 + 𝜆𝑦 + 𝜌𝑞 + 𝜈𝑒 + 𝜇𝑒𝑡

where 𝑅𝐸𝑉
𝑒𝑡 denotes the size of the EV fleet in EPCI 𝑒 by year-quarter 𝑡, 𝑍𝑒𝑡 stands for the

instrument of the EV demand equation used as a control variable here, 𝜆𝑦 is a year fixed effect, 𝜌𝑞
a quarter fixed effect, and 𝜈𝑒 an EPCI fixed effect. 𝜇𝑒𝑡 captures the unobserved variations (error
term).

To rule out simultaneity, following Li et al. (2017), I instrument the existing stock of registered
EVs 𝑅𝐸𝑉

𝑒𝑡 by current and past gasoline prices. Indeed, the higher the gasoline prices, the higher
the incentive to buy an EV, as potential fuel cost savings increase. Thus, in EPCIs where the cost
of gasoline is higher, drivers should be more likely to buy an electric car. Reversely, there doesn’t
seem to be a clear mechanism which would lead gasoline prices to impact the stock of charging
stations, other than through the EV sales channel. Consequently, this instrument should satisfy
both the relevance condition and the exclusion restriction.

Note that this time I use year and quarter fixed effects to control for time-varying shocks and

trend is the national industry employment growth rates.
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seasonality, instead of year-quarter fixed effects, because introducing year-quarter fixed effects
along the EPCI fixed effects would have left too few variations to exploit. Indeed, the price of
gasoline varies across EPCIs in France, but not as much as in a federal government like the U.S.

5.3 Heterogeneity on the Demand Side

So far, the use of the IV strategy has made it possible to disentangle the indirect network effects
existing on this two-sided market: thanks to this analysis, one will be able to conclude whether on
average, the supply effect is stronger or weaker than the demand effect, resulting in different policy
recommendations.

However, the charging infrastructure is likely to exhibit decreasing returns to additional stations:
the first station in an EPCI is likely to have a strong impact, while each station after that is likely
to have a smaller one as the total equipment improves. This could especially be the case as the
car fleet takes some time to renew and considering that consumers could be subject to a form of
acculturation due to the public display of the new technology. Consequently, the magnitude of the
effect of charging stations on EV sales may vary through time: thus, I check whether this effect
decreases between 2011 and 2022. To do so, I investigate the shape of the curvature in order
to check whether there exist decreasing marginal returns: I run the 2SLS regression with a first
stage in which I regress the log-number of stations and the squared log-number of stations on the
log-instrument and the squared log-instrument.

Moreover, the literature on EVs has mainly been focused on average effects only, not looking
deeper into the possibility of heterogeneous effects. Yet, the dynamics of mobility are likely to be
very different between rural and urban areas: country dwellers, who are much more dependent on
passenger cars to move around and tend to live in stand-alone houses, are likely to install private
chargers at home, since they have some private parking space at home, thus making them less
reliant on public infrastructure. In such a case, country dwellers’ decision to buy an EV would be
much more dependent on the level of EV purchase subsidies or subsidies on private chargers, rather
than on the availability of public stations nearby. Such a conclusion highlights how important
taking into account geographical heterogeneity is, since it leads to very different public policy
recommendations. To assess whether there are heterogeneous effects between rural and urban
areas, I exploit population density: I create quintiles of population density to categorize EPCIs and
I interact them with the instrument to finally run the 2SLS regression.

In addition, income inequality across territories could also lead to heterogeneous effects. Indeed,
if some EPCIs concentrate low-income households, it is possible that building charging stations
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will have a minor impact on EV sales, as the budget constraint would be too binding for households
anyway to be able to buy an electric car. To assess the impact of such socioeconomic disparity,
I construct quintiles of median equivalized disposable income to categorize EPCIs, interact them
with the instrument and run the 2SLS analysis.

6 Results

I first present the results for the EV demand equation and the charging station equation. I then
discuss heterogeneity.

6.1 Results for the EV Demand Equation

Table 4 and Table 5 present the results for the EV demand equation when a log-transformation is
applied to the number of stations and EV registrations. The log-transformation is not only useful to
standardize data but also to interpret the results: as both sides are log-specified, the point estimate
of interest can be interpreted as an elasticity.

While Section 5 explained why the instrument chosen satisfies the orthogonality condition, the
first-stage result (Table 4) tends to confirm, in addition, the relevance of the instrumental variable
chosen: the F-statistic is much larger than the value of reference for weak instruments and the
coefficient is indeed highly significant, at the 1% level.

Table 5 delivers the expected result as the positive and significant point estimate on the charging
infrastructure variable pinpoints the existence of indirect network effects: indeed, on average, a
10% increase in the installed base of charging stations leads to a 11.81% increase in the number of
quarterly EV registrations, this coefficient being significant at the 1% level. This is a large effect,
slightly higher than the 8.4% found by Li et al. (2017). This difference could be due to a different
“car culture” between the U.S. and France but possibly also to the geographical aggregates chosen:
as MSAs are large aggregates, capturing the very local effect of charging infrastructure investment
is more difficult.
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Table 4: EV demand equation - first-stage of the 2SLS

log(stations built by quarter 𝑡 in EPCI 𝑒)

Supermarkets × log(lagged national stations) 0.0011∗∗∗
(0.0004)

Observations 45,167
R2 0.61621
Within R2 0.04914

Year-quarter fixed effects Yes
EPCI fixed effects Yes
F-statistic 2,331.7

Notes: *** 𝑝 < 0.01, ** 𝑝 < 0.05, * 𝑝 < 0.1. Clustered (EPCI) standard-errors in parentheses.

Table 5: EV Demand Equation - second-stage of the 2SLS

log(quarterly EV registrations by EPCI)

log(stations built by quarter 𝑡 in EPCI 𝑒) 1.181∗∗∗
(0.1609)

Observations 45,167
R2 0.60157
Within R2 -0.93925

Year-quarter fixed effects Yes
EPCI fixed effects Yes

Notes: *** 𝑝 < 0.01, ** 𝑝 < 0.05, * 𝑝 < 0.1. Clustered (EPCI) standard-errors in parentheses.

Note that to perform the log-transformation, each time a zero appears in the needed chargers
or EV variables, I have to add one, i.e. I replace the null value with 𝑙𝑜𝑔(0 + 1) = 0. As the

33



dataset includes many zeros at the beginning of the period, especially regarding the number of
charging stations, I check this transformation doesn’t affect the estimation too much by dropping
such observations. In the Appendix, Table 11 presents the results when all the observations for
which the number of charging stations installed by time 𝑡 equals 0 are dropped. Table 13 adds
to this result, by also dropping observations for which quarterly EV sales are null. The first- and
second-stage coefficients are still highly significant (at least at the 5% level) and positive. The
second-stage coefficient is smaller than before though: a 10% increase in charging stations would
generate a 2.95% increase in quarterly EV registrations.

Moreover, I check the significance and direction of the indirect network effect by running the
2SLS without any functional transformation. Table 15 and Table 16, in the Appendix, display
highly significant and positive coefficients, in accordance with the log-transformed results.

6.2 Results for the Charging Stations Equation

Table 6 and Table 7 present the results for the charging station equation when a log-transformation
is applied to the number of stations, EV registrations and fuel prices. Again, to perform the log-
transformation, I add one when the registered value is null. In the Appendix, Table 17 and Table 18
present the results when all the null observations are dropped (for both EV and stations related
variables). As before, I also perform the regression with no functional transformation (Table 19
and Table 20 in the Appendix). For all these methods, I test four specifications with different
combinations for the instrumental variables: I use alternatively combinations made of the fuel
price in the last quarter, in the current quarter, one year ago, two years ago and three years ago.

In Table 6, the F-statistic is higher than the reference value for weak instruments, hence the
instruments chosen should satisfy the relevance condition. Interestingly, the direction of the
coefficient is not the one which was expected. Indeed, one would have expected that a higher fuel
price would have given incentives to buy an EV rather than an ICE. Then, explaining this negative
coefficient is a bit tedious: one explanation could be that a surge in fuel prices can greatly impact
consumers’ budget, thus reducing their financial capacity to buy EVs, whose upfront cost is high.

Moreover, unlike Li et al. (2017), Table 7 unveils no significant effect from the EV fleet on the
building of charging stations : standard errors are all the more very large. The coefficients are also
insignificant in all the other specifications (Table 18 and Table 20). Several reasons could explain
this finding. First, the few papers which studied this issue found the effect of building charging
stations on EV demand to be stronger than the other way around (Li et al., 2017 ; Springel, 2021).
As such, finding no significant effect and having point estimates very close to 0 points into this
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direction: the main channel to speed up EV adoption is to increase the number of charging stations,
at least at the beginning since they might suffer from decreasing marginal returns afterwards.
Secondly, it could be due to the structure of the deployment of charging stations: indeed, if it is
not the local demand for charging stations (i.e. the EV fleet) which creates incentives to build
stations, it is likely that stations are eventually built according to the way subsidies are designed.
For instance, it is likely that the building of charging stations depends much more on local political
willingness to subsidize such infrastructure than on the local EV fleet. Such political effects are
highlighted by the case of Poitou-Charentes in Figure 9, a region which intended to become a
pioneer in electric mobility as of 2012. Consequently, since building charging stations is partly
subject to local political considerations, what is at stake is to make sure local authorities design
their subsidies efficiently enough to speed up EV adoption quickly: that is why, in its latest report
on the charging infrastructure, the French Competition Authority (2024) recommends to make it
compulsory for local authorities to draw up master plans for the development of charging stations
(SDIRVE, “schémas directeurs de développement des IRVE”) on their territory. Finally, from a
purely methodological viewpoint, it would be interesting to see if the results stay identical when
using other instrumental variables: indeed, with such EPCI, year and quarter fixed effects, it is
likely that few variations are left to exploit when working with fuel prices in France. Indeed,
contrary to the U.S., variations in fuel prices across the country remain quite small.

Also, the second-stage results (Table 7) interestingly highlight that the EV demand equation
instrument is highly significant and positive, i.e. it has a positive impact on the building of stations,
which further confirms that it satisfies the relevance condition needed to use it as an instrumental
variable in the EV demand equation.
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Table 6: Charging Station Equation - first-stage of the 2SLS

log(quarterly EV fleet by EPCI)
(1) (2) (3) (4)

log(fuel price in current quarter) -0.5039∗∗∗ -0.4274∗∗∗ -0.4267∗∗∗
(0.0474) (0.0431) (0.0573)

log(fuel price in the last quarter) -0.2962∗∗∗ -0.1344∗∗∗ -0.1394∗∗∗
(0.0269) (0.0152) (0.0277)

log(fuel price one year ago) 0.2031 0.1260 0.2602
(0.3490) (0.3571) (0.3501)

log(fuel price two years ago) -0.3016 -0.3006 -0.3164
(0.2688) (0.2738) (0.2737)

log(fuel price three years ago) -1.367∗∗∗ -1.356∗∗∗ -1.386∗∗∗
(0.3957) (0.3970) (0.3969)

EV demand equation instrument (log) 0.0003 0.0003 0.0003 0.0004
(0.0002) (0.0002) (0.0002) (0.0002)

Observations 43,889 43,861 43,861 44,097
R2 0.94829 0.94825 0.94830 0.94776
Within R2 0.01180 0.01104 0.01196 0.00998

Year fixed effects Yes Yes Yes Yes
Quarter fixed effects Yes Yes Yes Yes
EPCI fixed effects Yes Yes Yes Yes
F-statistic 43.1 34.6 35.9 40.6

Notes: *** 𝑝 < 0.01, ** 𝑝 < 0.05, * 𝑝 < 0.1. Clustered (EPCI) standard-errors in parentheses. As the dataset
used only contains the number of EVs making up the EV fleet yearly but gives quarterly sales, I am able to construct
the EV fleet quarterly by creating a correction factor. I compute the number of EVs going out of service every year
and, assuming that these removals are equally distributed between the four quarters, I can allocate them to each quarter
and, using quarterly EV sales, I finally obtain the quarterly EV fleet.
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Table 7: Charging Station Equation - second-stage of the 2SLS

log(stations built by quarter 𝑡 in EPCI 𝑒)
(1) (2) (3) (4)

log(quarterly EV fleet by EPCI) -0.0172 -0.0874 -0.0375 0.0300
(0.2628) (0.3210) (0.2570) (0.1881)

EV demand equation instrument (log) 0.0011∗∗∗ 0.0011∗∗ 0.0011∗∗∗ 0.0011∗∗∗
(0.0004) (0.0004) (0.0004) (0.0004)

Observations 43,889 43,861 43,861 44,097
R2 0.61418 0.60942 0.61301 0.61532
Within R2 0.04607 0.03442 0.04330 0.05105

Year fixed effects Yes Yes Yes Yes
Quarter fixed effects Yes Yes Yes Yes
EPCI fixed effects Yes Yes Yes Yes

Notes: *** 𝑝 < 0.01, ** 𝑝 < 0.05, * 𝑝 < 0.1. Clustered (EPCI) standard-errors in parentheses.

6.3 Heterogeneous Effects on the Demand Side

To achieve a quick electrification of the car fleet, tailoring public policy is crucial. Hence, the
need to investigate potential heterogeneous effects. Thus, I investigate whether the effects from
building stations on EV sales are heterogeneous across time, space and income.

6.3.1 Heterogeneity over Time

To study heterogeneity over time, I use a polynomial specification to check whether the point
estimate on the squared of the log number of stations is negative.

Table 8 exhibits a significant negative coefficient on the squared log-number of charging stations,
suggesting the existence of decreasing marginal returns on charging infrastructure. Consequently,
it suggests the charging infrastructure exhibits decreasing returns to additional stations.
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Table 8: Time heterogeneity - second-stage (2SLS)

log(quarterly EV registrations by EPCI)

log(stations) 2.383∗∗∗
(0.2597)

log(stations)2 -0.2358∗∗∗
(0.0372)

Observations 45,167
R2 0.29020
Within R2 -2.4548

Year-quarter fixed effects Yes
EPCI fixed effects Yes

Notes: *** 𝑝 < 0.01, ** 𝑝 < 0.05, * 𝑝 < 0.1. Clustered (EPCI) standard-errors in parentheses.

6.3.2 Spatial heterogeneity

As explained in Section 5, it is likely that rural areas experience different dynamics, as compared
to urban areas, since country dwellers tend to live in stand-alone houses, making it easier to charge
at home rather than with public infrastructure.

The results presented in Table 9 display a clear gradient: the more densely populated an area
is, the greater the effect. For instance, in an EPCI categorized in the fifth quintile, i.e. in an EPCI
exhibiting a density of at least 182.17 people per km2, a 10% increase in the number of charging
stations would lead to a 9.9% increase in the number of EV registrations. Reversely, the effect is
not even significant for the first quintile, in which the population density is inferior to 30.26 people
per km2; for the second quintile, in which the population density is smaller than 56.72 people per
km2, a 10% increase in charging stations would lead to a 4% increase only in EV registrations.

These results go into the direction of a smaller effect of public charging stations on EV sales
in rural areas. This is a hint that rural drivers may be less reliant on public charging infrastructure
than urban drivers as they can more easily charge at home. This is not surprising as the French
Competition Authority (2024) notices that “home charging is easily accessible in stand-alone
houses, but particularly complex for households living in multi-unit housing. [...] The level of
equipment in condominiums remains very low, with only 2% of them equipped with charging
infrastructure”.
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Yet, as seen in Section 4, rural EPCIs tend to have a lower share of EVs in their car fleet. Thus,
the smaller effect in rural EPCIs doesn’t mean that subsidies on public charging infrastructure
should be stopped (the effect is still positive!) but rather that it should be supplemented, for
instance, by subsidies on EV purchases and on private chargers.

Table 9: Spatial heterogeneity - second-stage (2SLS)

log(quarterly EV registrations by EPCI)

log(stations) × Q1(density) -0.1010
(0.1586)

log(stations) × Q2(density) 0.4044∗∗∗
(0.1187)

log(stations) × Q3(density) 0.8660∗∗∗
(0.1345)

log(stations) × Q4(density) 0.9994∗∗∗
(0.1077)

log(stations) × Q5(density) 0.9932∗∗∗
(0.1224)

Observations 45,167
R2 0.73526
Within R2 -0.28858

Year-quarter fixed effects Yes
EPCI fixed effects Yes

Notes: *** 𝑝 < 0.01, ** 𝑝 < 0.05, * 𝑝 < 0.1. Clustered (EPCI) standard-errors in parentheses. Q1(density) to
Q5(density) categorize EPCIs in quintiles, depending on their population density.

6.3.3 Income heterogeneity

As explained in Section 5, it is likely that EPCI with the highest concentration of low-income
households are less responsive to the building of charging stations, as the budget constraint may be
too binding anyway for these consumers to buy EVs.

This is confirmed by data: Table 10 highlights that a 10% increase in the number of charging
stations would lead to a 9% increase in the number of EV registrations in the EPCIs whose median
equivalized income is smaller than e21,082, compared with 11% in the EPCIs whose median
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equivalized income is higher than e23,99817.

These results underline the need for multi-dimensional public policies, particularly in the areas
most in need. Supporting only the building of charging infrastructure is likely to be insufficient
in territories gathering low-income households if no EV purchase policy is conducted. This is all
the more true given that the “poorest” EPCIs are often also the most rural: indeed, in our dataset,
comparing the EPCIs making up the bottom 40% in population density and in median equivalized
income, 248 out of 395 combine both characteristics. Thus, roughly 63% of the most rural EPCIs
are also the poorest.

Table 10: Income heterogeneity - second-stage (2SLS)

log(quarterly EV registrations by EPCI)

log(stations) × Q1(income) 0.9191∗∗∗
(0.0964)

log(stations) × Q2(income) 1.014∗∗∗
(0.1375)

log(stations) × Q3(income) 1.224∗∗∗
(0.1412)

log(stations) × Q4(income) 1.254∗∗∗
(0.1000)

log(stations) × Q5(income) 1.112∗∗∗
(0.2287)

Observations 45,167
R2 0.62797
Within R2 -0.81076

Year-quarter fixed effects Yes
EPCI fixed effects Yes

Notes: *** 𝑝 < 0.01, ** 𝑝 < 0.05, * 𝑝 < 0.1. Clustered (EPCI) standard-errors in parentheses. Q1(income) to
Q5(income) categorize EPCIs in quintiles, depending on their median equivalized disposable income.

17Table 10 shows a maximal effect on the fourth quintile, while the fifth quintile experiences a smaller effect. It
could be because high-income households can buy EV models which have a better range, thus making them less range
anxious and less sensitive to charging stations. It would be interesting, in the future, to check this hypothesis by getting
more extensive data which would include personal income as well as the model of the EV bought.
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7 Conclusion

As transportation represents a third of French greenhouse gas emissions, electrifying the car
fleet has been made a national priority by successive governments. Often described as two-sided,
the EV market is said to exhibit indirect network effects. Hence, a significant debate exists today to
determine which tools should be used to quickly speed up EV adoption. In particular, there exist two
main types of subsidies: subsidies on EV purchases and subsidies on the charging infrastructure.
Should one of them be prioritized? Which one? This depends on the magnitude of the effect of
building charging stations on EV adoption and reversely.

Therefore, building on the “chicken-and-egg” literature and Li et al. (2017), I quantify the
intensity of these two effects, working on comprehensive French EV and station data from 2011 to
2022. Adopting a 2SLS approach, I find that, on average, a 10% increase in the number of charging
stations led to a 11.8% rise in EV registrations throughout this period. On the contrary, I find no
significant effect of EV adoption on the building of charging stations. First, this is in line with Li
et al.’s (2017) results as they conclude that the effect of the charging infrastructure on EV adoption
is much larger than the converse effect. Secondly, this absence of effect may perhaps be a sign that
the building of charging stations is much more determined by the local political will to subsidize it,
rather than by a law of supply and demand. Thus, this could mean that the charging infrastructure
is not always deployed where it is the most needed at a given moment. However, this shouldn’t
be seen only as a form of inefficient dynamics. Indeed, another major feature of EV adoption in
France nowadays is its unequal distribution across the territory: rural and low-income territories
tend to have a lower share of EVs in their car fleet. Consequently, a voluntaristic policy consisting
in deploying charging infrastructure even where there are few EVs makes sense if one seeks to
stimulate EV adoption in such territories. Yet, this analysis has also shown that the positive impact
of building stations on EV adoption is much smaller in these areas: country dwellers may be less
reliant on public infrastructure as they can more easily charge at home and low-income households
may have a budget constraint too binding anyway to be able to buy an EV. As a consequence, the
support to the deployment of charging stations in the public space is likely to achieve its goal only
if other types of support are implemented too, such as EV purchase subsidies.

Much is still to investigate and discover regarding the EV market. This study made it possible to
study a more recent period and a new context (the French one), as compared to more distant periods
and the U.S. and Norwegian contexts, which have traditionally been analyzed. Yet, this analysis
has shown the need for an improvement in the quality of data on charging stations in France: the
charging station dataset used, which is an open dataset, has been extremely useful but it included
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many duplicates, measurement and location errors or missing information, especially regarding the
commissioning date of charging stations and the number of available charging terminals within
stations. This issue creates a risk of selection bias for this analysis, but also for all the institutional
studies conducted in France on this topic. The number of such analyses can only grow in the
future, as the jury is still out regarding many issues: what is the relative impact of fast chargers,
as compared to slow charging terminals? What is the impact of having several coexisting norms
of price display (price per minute, price per kWh, etc.)? For all these challenges, data will be key:
hence the recommendation of the French Competition Authority (2024) to make the improvement
of such data a priority.
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Appendix

Figure 11: Evolution of New Passenger Car Registrations from 2011 to 2022 in France

Notes: This graph draws the number of registrations of new passenger cars used by private individuals and professionals,
in France, including Corsica and overseas territories.
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Table 11: EV Demand Equation - first-stage of the 2SLS with null observations of charging stations
removed

log(stations built by quarter 𝑡 in EPCI 𝑒)

Supermarkets × log(lagged national stations) 0.0009∗∗
(0.0004)

Observations 11,773
R2 0.82055
Within R2 0.02992

Year-quarter fixed effects Yes
EPCI fixed effects Yes
F-statistic 361.8

Notes: *** 𝑝 < 0.01, ** 𝑝 < 0.05, * 𝑝 < 0.1. Clustered (EPCI) standard-errors in parentheses. All observations
exhibiting zeros for the charging stations variable were removed.

Table 12: EV Demand Equation - second-stage of the 2SLS with null observations of charging
stations removed

log(quarterly EV registrations by EPCI)

log(stations built by quarter 𝑡 in EPCI 𝑒) 0.2953∗∗∗
(0.0959)

Observations 11,773
R2 0.89739
Within R2 -0.05397

Year-quarter fixed effects Yes
EPCI fixed effects Yes

Notes: *** 𝑝 < 0.01, ** 𝑝 < 0.05, * 𝑝 < 0.1. Clustered (EPCI) standard-errors in parentheses. All observations
exhibiting zeros for the charging stations variable were removed.
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Table 13: EV Demand Equation - first-stage of the 2SLS with null observations of charging stations
and EVs removed

log(stations built by quarter 𝑡 in EPCI 𝑒)

Supermarkets × log(lagged national stations) 0.0008∗∗
(0.0004)

Observations 10,703
R2 0.81844
Within R2 0.02848

Year-quarter fixed effects Yes
EPCI fixed effects Yes
F-statistic 312.6

Notes: *** 𝑝 < 0.01, ** 𝑝 < 0.05, * 𝑝 < 0.1. Clustered (EPCI) standard-errors in parentheses. All observations
exhibiting zeros for the charging stations and the EV registrations variables were removed.

Table 14: EV Demand Equation - second-stage of the 2SLS with null observations of charging
stations and EVs removed

log(quarterly EV registrations by EPCI)

log(stations built by quarter 𝑡 in EPCI 𝑒) 0.2041∗∗
(0.0924)

Observations 10,703
R2 0.89925
Within R2 -0.02854

Year-quarter fixed effects Yes
EPCI fixed effects Yes

Notes: *** 𝑝 < 0.01, ** 𝑝 < 0.05, * 𝑝 < 0.1. Clustered (EPCI) standard-errors in parentheses. All observations
exhibiting zeros for the charging stations and the EV registrations variables were removed.
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Table 15: EV Demand Equation - first-stage of the 2SLS, without log-transformation

Stations built by quarter 𝑡 in EPCI 𝑒

Supermarkets × lagged national stations 9.63 × 10−5∗∗∗

(7.33 × 10−6)

Observations 45,167
R2 0.78809
Within R2 0.71124

Year-quarter fixed effects Yes
EPCI fixed effects Yes
F-statistic 111,132.8

Notes: *** 𝑝 < 0.01, ** 𝑝 < 0.05, * 𝑝 < 0.1. Clustered (EPCI) standard-errors in parentheses.

Table 16: EV Demand Equation - second-stage of the 2SLS, without log-transformation

Quarterly EV registrations by EPCI

Stations built by quarter 𝑡 in EPCI 𝑒 2.598∗∗∗
(0.6336)

Observations 45,167
R2 0.65478
Within R2 0.42632

Year-quarter fixed effects Yes
EPCI fixed effects Yes

Notes: *** 𝑝 < 0.01, ** 𝑝 < 0.05, * 𝑝 < 0.1. Clustered (EPCI) standard-errors in parentheses.
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Table 17: Charging Station Equation - first-stage of the 2SLS with null observations removed

log(quarterly EV stock by EPCI)
(1) (2) (3) (4)

log(fuel price in the last quarter) -0.0685∗∗∗ -0.0683∗∗∗ -0.0732∗∗∗
(0.0156) (0.0138) (0.0144)

log(fuel price in current quarter) -0.0466∗ -0.0006 -0.0024
(0.0270) (0.0259) (0.0281)

log(fuel price one year ago) -0.5996 -0.6217 -0.6216
(0.3788) (0.3826) (0.3814)

log(fuel price two years ago) -0.1628 -0.1233 -0.1234
(0.2724) (0.2789) (0.2788)

log(fuel price three years ago) -0.5851 -0.5812 -0.5813
(0.4115) (0.4135) (0.4135)

EV demand equation instrument (log) 1.87 × 10−5 1.81 × 10−5 1.81 × 10−5 6.16 × 10−6

(3.49 × 10−5) (3.48 × 10−5) (3.48 × 10−5) (3.57 × 10−5)

Observations 12,475 12,467 12,467 12,503
R2 0.98985 0.98985 0.98985 0.98981
Within R2 0.00511 0.00556 0.00556 0.00091

Year fixed effects Yes Yes Yes Yes
Quarter fixed effects Yes Yes Yes Yes
EPCI fixed effects Yes Yes Yes Yes
F-statistic 15.9 17.3 13.9 5.58

Notes: *** 𝑝 < 0.01, ** 𝑝 < 0.05, * 𝑝 < 0.1. Clustered (EPCI) standard-errors in parentheses. All null
observations were removed. The observations span 987 different EPCIs.
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Table 18: Charging Station Equation - second-stage of the 2SLS with null observations removed

log(stations built by quarter 𝑡 in EPCI 𝑒)
(1) (2) (3) (4)

log(quarterly EV stock by EPCI) -1.659 -1.681 -1.679 0.0949
(1.609) (1.457) (1.457) (1.037)

EV demand equation instrument (log) 0.0007∗ 0.0007∗ 0.0007∗ 0.0007∗∗
(0.0004) (0.0004) (0.0004) (0.0003)

Observations 12,475 12,467 12,467 12,503
R2 0.75520 0.75402 0.75413 0.80431
Within R2 -0.22385 -0.22965 -0.22912 0.02035

Year fixed effects Yes Yes Yes Yes
Quarter fixed effects Yes Yes Yes Yes
EPCI fixed effects Yes Yes Yes Yes

Notes: *** 𝑝 < 0.01, ** 𝑝 < 0.05, * 𝑝 < 0.1. Clustered (EPCI) standard-errors in parentheses. All null
observations were removed. The observations span 987 different EPCIs.
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Table 19: Charging Station Equation - first-stage of the 2SLS without log-transformation

Quarterly EV stock by EPCI
(1) (2) (3) (4)

Fuel price in the last quarter 71.36∗∗∗ 78.75∗∗∗ 78.62∗∗∗
(7.574) (5.500) (5.701)

Fuel price in current quarter 21.52∗ -21.72∗∗ -21.97∗
(12.01) (10.60) (13.08)

Fuel price one year ago 17.53 -18.97 -11.48
(64.99) (68.14) (66.23)

Fuel price two years ago 36.17 37.74 37.56
(34.95) (35.13) (35.21)

Fuel price three years ago 38.21 43.11 40.99
(61.34) (61.43) (61.93)

EV demand equation instrument 0.0021∗∗∗ 0.0021∗∗∗ 0.0021∗∗∗ 0.0021∗∗∗
(0.0003) (0.0003) (0.0003) (0.0003)

Observations 43,889 43,861 43,861 44,097
R2 0.90451 0.90470 0.90470 0.90464
Within R2 0.83261 0.83293 0.83294 0.83292

Year fixed effects Yes Yes Yes Yes
Quarter fixed effects Yes Yes Yes Yes
EPCI fixed effects Yes Yes Yes Yes
F-statistic 3.82 24.9 20.8 48.3

Notes: *** 𝑝 < 0.01, ** 𝑝 < 0.05, * 𝑝 < 0.1. Clustered (EPCI) standard-errors in parentheses.
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Table 20: Charging Station Equation - second-stage of the 2SLS without log-transformation

Stations built by quarter 𝑡 in EPCI 𝑒
(1) (2) (3) (4)

Quarterly EV stock by EPCI -0.0996 -0.0100 -0.0045 -0.0011
(0.1131) (0.0074) (0.0067) (0.0043)

EV demand equation instrument 0.0003 0.0001∗∗∗ 0.0001∗∗∗ 9.86 × 10−5∗∗∗

(0.0002) (1.87 × 10−5) (1.83 × 10−5) (1.41 × 10−5)

Observations 43,889 43,861 43,861 44,097
R2 0.19013 0.77436 0.78318 0.78712
Within R2 -0.10294 0.69271 0.70472 0.71017

Year fixed effects Yes Yes Yes Yes
Quarter fixed effects Yes Yes Yes Yes
EPCI fixed effects Yes Yes Yes Yes

Notes: *** 𝑝 < 0.01, ** 𝑝 < 0.05, * 𝑝 < 0.1. Clustered (EPCI) standard-errors in parentheses.

Table 21: Time heterogeneity - first-stage (2SLS)

log(stations) log(stations)2

log-instrument 0.0024∗∗∗ 0.0090∗∗∗
(0.0004) (0.0023)

log-instrument2 −2.19 × 10−7∗∗∗ −5.68 × 10−7∗∗

(4.93 × 10−8) (2.62 × 10−7)

Observations 45,167 45,167
R2 0.62646 0.57640
Within R2 0.07453 0.13949

Year-quarter fixed effects Yes Yes
EPCI fixed effects Yes Yes
F-statistic 1,816.8 3,656.7

Notes: *** 𝑝 < 0.01, ** 𝑝 < 0.05, * 𝑝 < 0.1. Clustered (EPCI) standard-errors in parentheses.
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