
Weather Effects in Energy Seasonal
Adjustment: An Application to France

Energy Consumption∗

Marie Bruguet†,1,2,3, Ronan Le Saout‡4, and Arthur Thomas §,1,3

1Université Paris-Dauphine, Université PSL, LEDa, CNRS, IRD, 75016 Paris, France
2Commissariat Général au Développement Durable, SDES, 92700, Puteaux, France

3Climate Economics Chair, 75001, Paris, France
4Université de Rennes, ENSAI, CREST, F-35000 Rennes, France

September 30, 2024

Abstract

This paper addresses the challenge of adjusting energy consumption data for weather
and seasonal variations by introducing a new General Weather Indicator (GWI). The
GWI combines multiple weather variables, including temperature, wind, sunlight, rain,
and cloudiness, using a novel econometric approach that applies K-means for threshold
identification and LASSO for variable selection. An empirical analysis of electricity and
natural gas consumption in France highlights the importance of integrating wind and
sunlight, revealing sector-specific responses to weather. Robustness checks across spa-
tial and temporal scales confirm the GWI’s reliability. For France, using the traditional
base temperature of 17°C, instead of the optimal GWI, leads to an underestimation of
energy consumption responses by up to 7.3% (0.80 TWh per month), equivalent to the
output of over one and a half nuclear reactors.
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1 Introduction

To mitigate the effects of climate change, the Paris Agreement calls for a reduction in global
emissions. This highlights the significant potential for European countries to meet their
emissions targets by significantly reducing energy consumption. In 2021, energy use accounts
for 76.7% of total emissions on average, underscoring its key role in achieving environmental
goals.1 In this context, the French government has decided reduce energy consumption
by 20% in 2030 compared to 2012 (see MTE, 2020). This initiative aims to reduce both
greenhouse gas emissions and dependence on fossil fuels. In order to assess the effectiveness
of such strategies, government agencies need to use tools that facilitate the evaluation of
their impact in real time. Although it is possible to evaluate the causal effect of a specific
efficiency policy aimed at reducing energy consumption in a posteriori manner, this is not
a straightforward process, (see e.g. Gerarden et al., 2017; Fowlie et al., 2018; Peñasco and
Anadón, 2023). The assessment of changes in energy consumption in real time represents
a significant challenge, given the multitude of factors that contribute to it, including socio-
economic, political, and climatic factors (see e.g. Dell et al. (2014); Aubin et al. (1995)).

This paper focuses on identifying and analysing the various factors that influence energy
consumption, with particular emphasis on seasonal and meteorological variables. It is evident
that there is a significant correlation between monthly energy consumption and temperature.
This is largely due to the high energy demand for heating buildings during the winter months
and cooling buildings in hot climates during the summer. To ensure reliable comparisons
over time and to assess the impact of socio-economic factors alone, it is essential to correct
observed consumption for seasonality and climatic variations (see e.g. Pang et al., 2022). It is
therefore important for public policy makers to have access to robust seasonal adjustments.
In France, for example, this weather- and seasonally-adjusted energy consumption serves
as a benchmark for assessing progress toward the net-zero goal of the national strategy
("Stratégie Nationale Bas-Carbone"). Futhermore, all indicators used to monitor and inform
future energy capacity investment decisions are expressed in weather- and seasonally-adjusted
values, in line with the government’s ten-year plan.2 It is also crucial to assess the impact of
a sufficiency policy such as the "Plan de sobriété énergétique" on energy consumption, taking
into account weather and seasonal variations.3 This is particularly relevant in the context of a
change in consumer behavior due to environmental awareness and/or price increases, such as
the inflationary spike triggered by the sharp fall in Russian supplies. Incorrect specification
of variables and/or functional form could lead to biased estimates of energy consumption
reductions and an incomplete assessment of the impact of a given policy.

1National emissions reported to the United Nations Framework Convention on Climate Change and the
EU Greenhouse Gas Monitoring Mechanism.

2. The "Programmation Pluriannuel de l’Energie" Multi-Annual Energy Plan (MAEP) establishes the
priorities for government action on energy policy for metropolitan France over the next decade, divided into
two 5-year periods. The current plan covers the period from 2024 to 2033.

3"Plan de sobriété énergétique" promotes the concept of energy sufficiency, which is the voluntary and
organized reduction of energy consumption. It includes various measures aimed at changing certain habits
and reducing unnecessary energy consumption.
Environmental awareness has been growing in France over the years, and an annual survey by the Agence de
l’Environnement et de la Maîtrise de l’Energie (ADEME) assesses a 36% awareness of climate change as the
main environmental concern ADEME (2022).
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The concept of Heating Degree Days (HDD) and Cooling Degree Days (CDD) has tra-
ditionally been used to explain seasonal patterns in energy consumption due to weather
variations. The calculation of HDD (CDD) is based on the concept of base temperature.
This indicator is only calculated if the temperature at time t is below (or above) the base
temperature. The base temperature is the outdoor temperature at which agents begin to heat
(cool) buildings to achieve an indoor comfort temperature. The concept of HDD (CDD) is
based on the understanding that there is a non-linear relationship between temperature and
energy consumption, as outlined by Henley and Peirson (1997). This methodology dates
back to the 1870s when it was first used in agricultural yield studies. It is now widely used
to measure adjusted energy use. While there has been extensive research on the estimation
of temperature response functions for energy demand (see Fazeli et al., 2016, for a compre-
hensive review), a broader view of the literature (De Azevedo et al., 2015) underlines the
need for a statistically validated approach, as most papers using HDD indicators still define
a base temperature of 18°C, mostly based on Thom (1954).4

Beyond the choice of base temperature, this definition of HDD (CDD) can be challenged
in three ways: first, there is no reason for the base temperature to be constant over time. For
instance, Sailor and Pavlova (2003) posits that long-term climate change may markedly boost
residential electricity consumption, largely due to rising air conditioning market saturation,
particularly in cities with low to moderate saturation levels. This could have a far greater im-
pact than previously estimated. Furthermore, Kennard et al. (2022) emphasises that global
cooling demand is also driven by population growth in warmer regions, rather than only by
a global rising of temperatures. This is evidenced by the fact that population-weighted cool-
ing degree-days are increasing at a faster rate than area-weighted ones. This highlights the
need for careful consideration of base temperature in predicting future energy demand. Con-
sequently, these papers argue for recognising dynamic temperature patterns over extended
periods, particularly in the context of climate change. Second, there is no reason for the base
temperature to be constant in space, as Bessec and Fouquau (2008) underscores the impru-
dence of assuming a uniform temperature base across different geographical regions. Finally,
there is no reason to take temperature as the sole weather indicator. Lefieux (2007) and
Lundström (2017) broaden the scope to include other weather indicators in the literature,
highlighting the multifaceted nature of factors influencing energy consumption, including
consideration of cloud cover and the effects of wind and sunlight.

Building on this literature and relying on a statistical approach to select weather vari-
ables, we propose a new general weather indicator (GWI). We define GWI, as a vector of the
optimal linear combination of heating days variable (HDV) and cooling days variable (CDV)
of different weather variables among temperature, wind, sunlight duration, rain and cloudi-
ness. To construct this indicator we proposed a two-step procedure: First, for each variable,
we extract the optimal(s) threshold(s) that capture the non-linear relationship between the
energy consumption and this variable using K-means. To our knowledge, this is the first
time that K-means has been used to extract these thresholds. Compared to the standard
likelihood-based thresholding approach, the K-means approach is more flexible: one does not
need to specify a priori a functional form, between the energy consumption and the weather
variable and/or the number of regimes before proceeding with the estimation. In our partic-

4See Appendix A.1 for a complete literature review.
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ular case, we also found that the K-means approach leads to an estimate that is more robust
to spatial heterogeneity. Then, in a second step, the GWI is constructed by selecting, for
each energy consumption, the optimal linear combination of these HDV and CDV using a
LASSO penalization. We select the optimal specification in the sample according to different
criteria: likelihood-based (AIC) and prediction error-based (RMSE). As an application of
our approach, we studied electricity and natural gas consumption in France, disaggregated
by delivery mode.5 This disaggregation allows us to proxy different sectoral activities from
residential and services to heavy industry. We use both monthly and daily energy consump-
tion series: the monthly data span from 01-2012 to 12-2022 and the daily low voltage energy
consumption series span from 01-2019 to 12-2021. Weather data are then provided at a fine
spatial scale for daily or monthly frequency, depending on the indicator.

At the national monthly level, for the residential sector, we found that the relationship
between French energy consumption and temperature is mostly L-shaped, with a heating
response and a comfort zone. Contrary to the previous study, we find that the best GWI
is composed of a linear combination of temperature HDV, wind HDV, and sunlight HDV.
For temperature HDV, we found that the best base temperature is 15°C, independent of the
introduction of other weather variables, which is neither the value currently used for French
national statistics (17°C) nor the one standard in the literature (18°C). Then, regarding other
economic sectors, our results found that at the monthly aggregated level, none of the CDV are
significant, except for the temperature in the functional form of mean electricity consumption,
highlighting the role of air conditioning in the tertiary sectors. For the industrial sector, we
found that the response function to weather is in general quasi null.

We perform several checks to ensure the robustness of the GWI indicator. First, we test
the robustness of the threshold estimation to spatial aggregation on residential electricity
consumption: we study the 12 administrative regions of France, covering a wide range of
different climatic zones. We found that our approach is robust to spatial aggregation, indeed
we recover the same national threshold by averaging the one from each region, but we obtain
different regional values in line with the variability of the French climatic zones. We also
found the temperature CDV to be significant for residential electricity consumption in the
southern region of France, highlighting the role of air conditioning in these regions. Sec-
ondly, we test the sensitivity of the GWI approach to time aggregation, still on residential
electricity consumption, we study and compare daily and monthly frequency consumption.
This confirms the need to include wind and sunlight duration as weather control variables
on temperature for the residential sector. Then, as a by-product of our results, we esti-
mate the parameters of the sectoral weather elasticities for French energy consumption, at
the monthly and daily levels and for different regions. The estimation of these elasticities
is of primary importance, as shown by Bernard et al. (2007), for example to calibrate the
microsimulation models available for France (see for example Chaton, 2024; Giraudet et al.,
2021; Thao Khamsing et al., 2016), leading to a more accurate response to a policy. To

5Electricity and natural gas consumption account for 44% of total French final energy consumption. Both
consumptions are considered in the empirical analysis of this paper, assuming that natural gas and electricity
consumption react differently to weather variations. For example, it is unusual to use natural gas to cool
buildings in summer. In addition, the proposed approach could be extended to other energy sources such as
coal, oil, and biomass, but this is beyond the scope of this paper.
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illustrate the importance of finding the optimal specification to adapt to weather variations,
we can make a simple comparison of the estimated thermal sensitivity coefficients of residen-
tial gas consumption. It shows that using the temperature HDV with a base temperature
of 17°C instead of the optimal GWI underestimates the response of energy consumption to
temperature by up to 7.3%. On average, this results in an underestimation of consumption
of 0.80 TWh, equivalent to the output of over one and a half nuclear reactors per month,
highlighting the critical importance of optimal weather elasticity estimates.

The remainder of this paper is organized as follows. In section (2) we present the data
and associated descriptive statistics. In section (3) we present the methodological procedure.
Then in section (4) we develop our main application. In section (5) we discuss further
robustness analysis. Finally, a concluding section (6) is proposed.

2 Preliminary analysis of the data

2.1 Energy demand

Since one of the main goal of this paper is to provide tools for monitoring the impact of
national policies to reduce energy demand, our main application focuses on the monthly
aggregated gas and electricity demand time series at the French national level, initially named
[qgas

t ] and [qelec
t ], respectively. The final demand of electricity is divided into three series

according to the type of distribution. First, the low-voltage demand, denoted [qLowe
t ], is

defined as a response to the demand of households and small businesses, providing power
to everyday appliances with a level voltage between 0.23 kV and 0.40 kV. Second, medium
demand, denoted [qMede

t ], is described as a distribution made to facilitate the local transport
of electricity to small industries, SMEs and businesses with a level tension between 15 kV
and 30 kV. Thirdly, high voltage demand, denoted as [qHighe

t ], for a voltage level ranging
from 63 kV to 400 kV.

Natural gas energy demand is decomposed into two series of final demand, namely: the
distributed demand denoted [qLowg

t ], defined as a network that transports gas from trans-
mission networks to final consumers not directly connected to transmission networks. The
transported demand, denoted by [qHighg

t ], denotes networks that facilitate the import of gas
from terrestrial interconnections with neighbouring geographical areas and methane termi-
nals. These monthly energy demand series can be used as a proxy for the energy demand
of the three main economic sectors: Industrial, Tertiary and Residential, for easier economic
interpretation, as described in Table 1.6 This database is publicly available from 01-2000 to
12-2022 (132 observations) from the Service des Données et Etudes Statistiques (SDES).7

We also examine French residential electricity demand at daily frequency and with re-
gional distribution.8 These daily electricity demand series for low voltage (< 36kVA) are
available from 01-01-2019 to 31-12-2023 from Enedis (1,825 observations). We checked that

6See Table 15 for the sectoral distribution of each delivered energy type and Table 16 for the distribution
of total demand across all different sectors in Appendix A.2

7Catalogue of energy data in France - https://www.statistiques.developpement-durable.gouv.fr
8Natural gas demand is not available at daily frequency
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Table 1: Time series of energy demands by economic sector

Series Sector Share
Electricity - Low voltage qLowe

t Proxy for residential consumption (80%)
Electricity - Medium voltage qMede

t Proxy for tertiary consumption (58%)
Electricity - High voltage qHighe

t Proxy for industrial consumption (81%)
Gas - Distributed q

Lowg

t Proxy for residential, tertiary and small industry consumption (74%)
Gas - Transported q

Highg

t Proxy for industrial consumption, gas-fired power plant included (94%)
Notes: Residential consumption represents 80% of the total electricity demand delivered via low voltage i.e. a 80% share.

the aggregate daily frequency demand have the same distribution than the monthly frequency
demand, at the source is not the same (see Table 17). The regional level is characterized
by the study of the 12 metropolitan administrative regions of France, with the exception of
Corsica: Auvergne-Rhône-Alpes, Bourgogne-France-Comté, Bretagne, Centre-Val de Loire,
Grand Est, Hauts-de-France, Île-de-France, Normandie, Nouvelle-Aquitaine, Occitanie, Pays
de la Loire, Provence-Alpes-Côte d’Azur.9 The electricity demand of these administrative re-
gions is made available by Enedis only from 01-01-2022 to 31-12-2023 (730 observations by
region).

2.2 Weather data

Weather data are provided by the official French weather and climate service Météo France at
a daily or monthly frequency, depending on the indicators.10 These data are available at a fine
spatial scale, as they are monitored by 539 weather stations throughout metropolitan France.
In line with the literature (See for example Kennard et al., 2022), each weather station is
weighted daily according to the population of the last available French census. The weighting
is used to reflect the population level and the associated level of heating and cooling demand.
In fact, the energy demand for a given temperature differs between countries according to
their respective population densities, once again as highlighted by Kennard et al. (2022).
It is important to note that the weighting by population census is particularly effective for
the residential sector. However, it can result in the emergence of spatial heterogeneity on
a more granular level for the tertiary and industrial sectors. For these sectors, weighting
by the number of people in employment may be a more appropriate approach. However,
given the sensitivity of the residential sector to weather conditions, we will maintain the
population-based weighting for this general study. First, each administrative town in France
is associated with the nearest weather station, i.e. a station can be associated with several
towns, but each town is associated with only one station. Then, the sum of the population
of each one is added to the corresponding station, giving each station a certain population
weight. Finally, the daily weather indicators are weighted as follows

weathers(pop) = weathers ∗ pops∑s
i=1 popi

(1)

9Figure 9 shows the location of each administrative region on the map of mainland France.
10Catalogue of meteorological data in France - https://meteo.data.gouv.fr/
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Where s is one of the 539 stations in the area, pops is the population associated with the
station and ∑s

i=1 popi is the national population.
Based on the literature (Dell et al., 2014; Lundström, 2017), five different initial weather

indicators are chosen. The cloudiness [cloudiness] is measured as the number of days in a
month where the share of the cloudy sky is greater than or equal to 80%, the rainfall [rain]
is measured as the amount of rainfall in 24 hours (millimeters), the temperature [temp] is
measured as the mean temperature in 24 hours (degrees Celsius), the sunlight [sunlight] is
measured as the sunshine duration (minutes), and finally, the wind speed [wind] is measured
as the daily average of 10-minute periods during which the wind speed at 10 meters above
the ground is recorded (meters per second). It is important to note that the term sunshine
duration is used to describe the length of time during which the ground surface is irradiated
by direct solar radiation. This duration can be considered an indicator of the frequency of
favourable weather conditions. Consequently, it not only reflects the difference in sunshine
duration due to the Earth’s rotation, but also takes into account days, even in summer, when
solar radiation does not directly irradiate the ground surface due to overcast skies.

Table 2: Weather time-series

Series Units (/24h)
Cloudiness cloud Number of days per month with overcast > 80%

Rain rain Rain level in millimeters
Temperature temp Average temperature in °C

Sunlight sunlight Duration of sunshine in minutes
Wind wind Wind speed in m/s

2.3 Descriptive statistics

Figure 1-(a), displays the monthly aggregated natural gas demand in France qgas
t , with the

part due to the distributed qLowg

t and the transported qHighg

t . The data indicates a seasonal
pattern in natural gas demand, primarily due to the distributed portion. Figure 1-(b),
displays the monthly aggregated electricity demand in France qelec

t , with contributions from
low voltage qLowe

t , medium voltage qMede
t , and high voltage qHighe

t . It reveals a similar
seasonal pattern, mainly driven by low voltage demand.11 In the Appendix A.3, we show
that this similar seasonal pattern appears at the daily frequency for electricity (see Figure 8
in Appendix A.3).

Table 3 shows the correlation between the selected energy demand time series and the
five initial weather indicators. There is a strong correlation between monthly energy demand
and temperature because of the large amount of energy needed to heat buildings in winter.
However, other weather indicators may also correlate with energy demand. This simple
correlation exercise already shows weaker correlations for cloudiness and rain. Temperature
has a strong negative correlation with energy demand, about -0.96 and -0.91 for total gas
and electricity demand, respectively. Sunlight has a similar relationship, with a correlation

11These seasonal patterns are confirmed by the analysis of the autocorrelation function (ACF) available
Figure 7 in Appendix A.3
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Figure 1: Sectoral energy demand time-series
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t . Monthly energy demands data span
01/2012-12/2022.

of -0.83 and -0.79 with total gas and electricity demand, respectively. However, sunlight is
also strongly correlated with the level of temperature, so these indicators may carry a similar
signal. Wind speed also has a significant positive correlation with energy demand at the
monthly level, meaning that an increase in wind speed leads to more energy demand, which
can be due to air infiltration of buildings, as highlighted in the literature (Sherman, 1987;
Sinnott, 2016). The correlation with total gas and electricity demand is around 0.53 and
0.46 respectively. At the sectoral disaggregate level, the correlations show singular behavior
such as: the qHighe

t is very weakly correlated with the climatic components, the precipitation
level is only correlated with qLow

t and the cloudiness is only significantly correlated with
qMede

t . Moreover, the correlation with temperature is still less strong for qMede
t than for the

other energies and sectors. This can be explained by a symmetric effect between heating and
cooling behavior, so the correlation is both negative and positive, the negative effect being
stronger so that the overall correlation is negative (see figure 2-(b)). This result highlights
the potential weakness of a correlation approach when the relationship between variable is
strongly non-linear and empahsys the need for a robust methodology. Then, the weather
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data correlation with energy is also available at the daily frequency in Table 18 in Appendix
A.3, mainly confirm the results from Table 3.

Table 3: Correlation between weather and energy time series

temp sunlight wind rain cloudiness

q
Lowg

t -0.969 -0.825 0.556 0.112 -0.020
(0.000) (0.000) (0.000) (0.063) (0.739)

q
Highg

t -0.822 -0.764 0.331 0.069 -0.057
(0.000) (0.000) (0.000) (0.252) (0.345)

qLowe
t -0.934 -0.807 0.498 0.130 0.008

(0.000) (0.000) (0.000) (0.031) (0.896)
qMede

t -0.410 -0.324 0.031 -0.064 0.435
(0.000) (0.000) (0.608) (0.292) (0.000)

qHighe
t -0.012 -0.043 0.164 0.044 -0.017

(0.848) (0.479) (0.006) (0.465) (0.782)
qgas

t -0.966 -0.833 0.531 0.107 -0.027
(0.000) (0.000) (0.000) (0.075) (0.656)

qelec
t -0.916 -0.790 0.466 0.100 0.134

(0.000) (0.000) (0.000) (0.097) (0.026)
Notes : The table shows the correlation coefficients and the p-values
associated. The columns are ranked according to the level of corre-
lation.The p-values represent the probability that the null hypothesis,
which represents a null correlation, is non-rejected. Thus a null p-
value is interpreted as a correlation significantly different from 0. The
variablesqgas

t andqelec
t represent the sums of the respective variables

q
Lowg

t , q
Highg

t and qLowe
t ,qMede

t ,qHighe

t . The data are at the monthly
frequency and span from 01/2000 to 12/2022.

The temperature is the main driver for energy demand but, as highlighted in Table 3, the
amount of sunlight or the wind speed are also correlated and could influence the demand,
and should be considered in the pool of possible weather indicators that influence energy
demand.

3 Methodology

In this section, we present our proposed framework for adjusting energy demand to seasonal
and weather variations.

3.1 Seasonal adjustment

To construct seasonally adjusted statistics, accounting for both working-day effects and
weather variations, the recommended econometric approach is based on regSARIMA method-
ology.12 While the regressive component includes a set of regressors explaining both working-
day effects and weather variations, the SARIMA component of the model is tailored to extract

12This approach is recommended by Eurostat. The European agency is responsible for developing, pro-
ducing, and disseminating European statistics. It sets and enforces statistical standards, methods, and
procedures, ensuring the production of comparable data across the European Union for various audiences.
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the seasonal patterns from the remaining variations in the regression stage. This model can
be summarized as follows: {

qt = βGWIqt + β2lyt + β3wdt + xt

Φ(Bs)δ(Bs)xt = Θ(Bs)at
(2)

Equation (2) describes the model with qt the time series to be adjusted, lyt is a vector
of dummy variables accounting for the leap year in the specification, wdt are two related
variables accounting for working days, and GWIt is the general weather indicator defined
in section 3.2.2. This indicator may include more than one climate variable, and thus the
estimated β may be a vector of parameters.13

The second part of the model is derived from the seasonal term of the xt residuals and
is defined by the SARIMA process, along a parameter denoted S, which takes S = 12 in a
monthly setup. SARIMA can be decomposed into two stationary polynomials, the autore-
gressive Φ(Bs) and the moving average δ(Bs), and then into a nonstationary polynomial, the
difference process Θ(Bs). The variations of the series that are not explained by the regres-
sors nor by the SARIMA process are reflected in the last term at, in other words, at can be
described as the adjusted time series following a N(µa, σ2

a) distribution centered around µa,
the mean monthly energy demand. The estimation of the model (2) is done by maximum
likelihood with the function X13 from Quartier-La-Tente et al. (2024).

3.2 Weather adjustement

Traditionally, the concepts of Heating Degree Days (HDD) (3) and Cooling Degree Days
(CDD) (4) have been adopted as a solution to explain the seasonal patterns of energy de-
mand due to weather variations. The calculation of CDD is based on the concept of base
temperature, the indicator is calculated if and only if the temperature at time t is below
(above) the base temperature. This method dates back to the 1870s in studies of agricultural
yields and is now widely used to measure adjusted energy demand.

HDD =
{

Tbase − Tt if Tt < Tbase

0 otherwise
(3)

CDD =
{

Tt − Tbase if Tt > Tbase

0 otherwise
(4)

Various econometric specifications have been tested in the literature (see Fazeli et al.,
2016, for a comprehensive review) to estimate the relationship between energy demand and
temperature level. These approaches can be summarized as follows: the first strand of the
literature focuses on linear and non-linear parametric methods. As mentioned above, the
historical method is to model a linear specification with heating degree days (HDD) and

Eurostat’s role is defined in Article 6 of Regulation (EC) No 223/2009 of the European Parliament and of
the Council of March 11, 2009, on European Statistics.

13In this specification, it is worth noting that the term GWIt is centred around the so-called Null Unified
Days indicators, which is the average of past GWIs over two decades.
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cooling degree days (CDD). Initially, these models used a single balance point temperature
for heating and cooling. The result is a V-shaped relationship between temperature and
energy use (Mitchell, 1984) (see figure 10-(a) in the appendix A.4). For example, U.S.
studies have often used 65°F (18.3°C) as the equilibrium point (Considine, 2000; De Dear
and Brager, 2001; Donovan and Fischer, 1976; Pardo and Valor, 2002; Thom, 1954), while
global analyses have favored 18°C (Isaac and Van Vuuren, 2009; Labriet, 2013). However,
more recent studies have explored different balance point temperatures to better capture
variations in energy use, using iterative methods over a range of balance point temperatures
(Kissock et al., 2003; Rüth and Lin, 2006). In addition, efforts have been made to refine
linear models by introducing a comfort zone (U-shape) that represents temperature ranges
where no heating or cooling is required (Eskeland and Mideksa, 2010; Hekkenberg et al.,
2009). (See figure 10-(b) in the appendix A.4).

Then, non-linear models have been developed to consider the complexities of consumer
behaviour and heating system capacities. With these models the level of temperatures itself
is used with non-linear transformation such as polynomials. For example, Henley and Peirson
(1997) found a polynomial estimation to better fit data on electrical space heating compared
to linear models. Asadoorian et al. (2008) and Gelegenis (2009) used log-linear formulations
and polynomials to estimate temperature elasticity in electricity demand.

The second part of the literature uses a semi/non-parametric method, i.e. the relationship
between energy demand and temperature is not set a priori, but is defined by the model.
Early on, Engle et al. (1986) introduced a semi-parametric regression method that combines
linear elements for income and energy prices with cubic and piecewise linear splines for
weather variables. This approach allows flexible modeling of the temperature-energy demand
relationship. Then, in a seminal work, Carcedo and Vicéns-Otero (2005) applied the Logistic
Smooth Transition Regression (LSTR) model, which effectively captures the smooth response
of electricity demand to temperature variations, but also provides a method for validating
the temperature thresholds traditionally used. Bessec and Fouquau (2008) extended this
method to analyze electricity demand in EU member states, proving that the relationship
between energy demand and outside temperature is non-linear for each country in the study.
Later, Hurn et al. (2016) also used LSTR modeling to asses the effects of deregulation in the
electricity of market, controlling by the temperature variations.

Our econometric framework combines these two strands of the literature by introducing
the new general heating weather indicator GWIqt , specific for one energy demand qt. This
indicator is defined as the vector of the optimal linear combination of the K heating days
variables HDV{qt,wk

t =wk
base}. Where for HDV{qt,wk

t =wk
base} we have k ∈ 1, . . . , K and t ∈

1, . . . , T with T the number of observations and K one of the weather variables among
temperature, wind, sunlight duration, rain and cloudiness.

Building on the standard definition of the (HDD) (3), we define a heating days variable
(HDV{qt,wt=wk

base}) for one specific weather variable (wk
t ) and one energy demand qt as:

HDV{qt,wk
t =wk

base} =
{

wk
base − wk

t if sign(ρ{qt,wk
t }) ∗ (wk

t > wk
base)

0 otherwise
(5)

where wk
base, extracted using K-means, is the optimal(s) extracted threshold(s) that capture
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the non-linear relationship between the energy demand (qt) and one wk
t (see Figure 2). To

define one HDV{qt,wk
t =wk

base}, it is necessary to introduce the sign from the correlation between
the energy demand qt and the weather indicator wk

t . For example for the production of HDD,
the correlation between the energy demand and the temperature is negative, i.e. that lower
temperature induces an increase in demand. Thus, the variable is different from zero if
−(wk

t > wk
base), in other terms, if (wk

t < wk
base). At the opposite, for the production of the

wind HDV, the correlation between the energy demand and the wind is positive i.e. that
stronger wind speed induces an increase in demand. Thus, the variable is different from zero
if (wk

t > wk
base). The literature, highlights the role of the air-conditioning, leading for a V

shape between the demand qt and the temperature (see Mitchell, 1984). To test the good
functional form (V, U or L shape see Figures 10 in Appendix A.4), we enhance our GWI, to
take into account this cooling effect. With similar notation of (5), we defined the CDV as
follows:

CDV{qt,wk
t =wk

base} =
{

wk
t − wk

base if sign(ρ{qt,wk
t }) ∗ (wk

t > wk
base)

0 otherwise
(6)

It is important to stress that, wk
base in (5) can be different from (6), depending on the

functional form.
The next subsections present the K-means procedure to define potential thresholds for

one couple of qt and wk
t and then the LASSO penalisation that selects the optimal linear

combination of both HDV and CDV for one qt.

3.2.1 Numbers of regimes and threshold extraction

One of the most used approaches in the literature to define the energy demand response
function to temperature is drawn upon Carcedo and Vicéns-Otero (2005) and Bessec and
Fouquau (2008), which employs a Smooth Transition AR (STAR) method based on a pre-
determined definition of the data generation function. However, a smooth method induces
an a priori definition of a function that best describes the relation between the series. One
can also use, a non-smooth methodology grounded in the method of multivariate Threshold
Vector Autoregression (TVAR) from Lo and Zivot (2001), based on the Self-extracting AR
(SETAR) modelling (Chan et al., 1985). However, estimating thresholds in this setup is
prone to sensitivity towards outliers or noise present in the data, which can lead to poten-
tially biased or inconsistent estimates. Incorrect specification of the number of thresholds
may result in misspecified models that fail to accurately capture the genuine underlying dy-
namics of the data. Empirically, it is uncommon to define more than three regimes with the
associated two thresholds in a TVAR modelling because it becomes computationally heavy:
every time a regime is added it strongly increases the size of the grid search. Moreover, in this
context of the relationship between climate and energy demand, imposing a predetermined
number of regimes a priori may overlook the true complexity of the relationship and means
relying directly on visual representation and the existing shape of the relationship (such as
V-shaped or U-shaped).14 This underscores the need for a thorough and flexible approach

14In appendix B.2, we perform a robustness analysis using the TVAR methodology. We find our approach
is robust at the French national level, extracting similar thresholds. However, moving to the desegregated
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to the model specification that allows for the discovery of the most appropriate response
functional form and the number of regimes to accurately characterize this relationship. To
do so, our approach relies on unsupervised classification and in particular using time-series
clustering methods.

More formally, our time-series clustering can be defined as follows: given our dataset
of a vector of two time-series containing qt, and one of the n weather variables denoted
by wk

t . We define D =
{
qt, wk

t

}
, and we find an unsupervised partitioning of D into C =

{C1, C2, . . . , CN}, where N is a hyperparameter correspond to the number of clusters that
you need to set a priori. We make this partitioning in such a way that homogeneous time
series are grouped based on a certain similarity measure (See Liao, 2005; Aghabozorgi et al.,
2015, for a comprehensive review on the definition and application of clustering with time
series.) 15

Drawing on the seminal K-means algorithm (MacQueen, 1967), we operate iteratively
assigning each data point to the nearest cluster centroid based on the Euclidean distance
metric. Subsequently, the centroids are recalculated as the mean of the data points assigned
to each cluster. This iterative process continues until convergence, resulting in clusters that
exhibit similar characteristics or behaviours (see Algorithm 1).

Algorithm 1: k-means algorithm
Data: Set of T data points D = {qt, wk

t } in R2, number of clusters N
Result: N clusters C = {C1, C2, . . . , CN}

1 Initialization: Choose N initial cluster centroids randomly: C = {c1, c2, . . . , cN};
2 repeat
3 for each data point dt = (qt, wk

t ) do
4 Assign dt to the nearest cluster centroid:

arg mincj∈C ∥dt − cj∥2

5 end
6 Recalculate the cluster centroids as the mean of the data points assigned to each

cluster:;
7 for each cluster Cj do
8 cj = 1

|Sj |
∑

dt∈Sj
dt where Sj is the set of data points assigned to cluster Cj;

9 end
10 until convergence;

One challenge in using the K-means algorithm is the requirement to pre-assign the hyper-

demand by regions, the heterogeneity of climate leads to the apparition of a cooling behaviour and thus, for
a constant number of regimes, the extracted threshold using the TVAR methodology is biased by the cooling
behaviour.

15Our application of clustering on time-series is similar to the Market Regime Clustering Problem (MRPC)
in Finance (Horvath et al., 2021), MRPC involves segmenting returns into different groups or regimes, each
characterized by distinct underlying distributions. Another close methodology is used by Greevy et al. (2024)
to detect regime switching in finance time-series, but the clustering algorithm is used on statistics distribution
variables rather than the series themselves.
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parameters, the N number of clusters, which may not always be readily available or feasible
to determine in real-world applications. This limitation can lower the algorithm’s ability to
produce natural clustering results and is recognized as one of its drawbacks. However, a
potential solution, particularly when the data dimensionality is low, is the Within Sum of
Square (WSS) criterion (7). The WSS measures the compactness of clusters by summing the
squared distances between each data point and its assigned cluster centroid. This criterion
typically decreases as the number of clusters increases, indicating tighter cluster formations.
However, beyond a certain point, further increasing the number of clusters may yield dimin-
ishing returns in terms of reducing the WSS. To address this, a common strategy involves
identifying the number of clusters N where the rate of decrease in the WSS significantly
slows down. This inflexion point, often referred to as the "elbow" point, serves as a practical
guide for selecting an appropriate value for N , striking a balance between maximizing cluster
compactness and minimizing model complexity.16

WSSN =
N∑

j=1

nN∑
t=1

||dt − c̄j||2 (7)

sWSS = WSSN+1

WSSN

− 1 (8)

To let the algorithm discover the number of regimes to accurately characterize the rela-
tionship, we first compute the WSS criterion for a set of 10 different numbers of N clusters
(Nϵ[1; 10]). Once the WWS is computed for each number of clusters, we compute the selec-
tion Within Sum of Square (sWSS) (8) that asses the variation of compactness between the
number of clusters. We set a subjective threshold, such that the number N of the cluster
selected is the last N number that leads to an increase in compactness greater than 60%
compared to the previous number of clusters.17 Once the number of clusters, which can be
interpreted as the number of regimes, is defined then the thresholds can be extracted. The
extracted thresholds (wbase) are defined as the mean maximum value of (wt) for each cluster.
The means from the top α%18 of the weather variable (wk

t ) is computed rather than the direct
maximum to avoid the potential bias from a one-time outlier. Once we obtain (wk

base), we
construct HDV{qt,wk

t =wk
base} using (5), and we repeat this step for every wk

t , in all the weather
variable. Similarly, we use the same procedure to find wk

base for CDV{qt,wk
t =wk

base} using (6).

3.2.2 Penalization procedure to construct the GWI

Once the pool of all the K weather variable-related HVD and CDV indicators is constructed, a
variable selection process is employed through penalization. Penalization models incorporate

16It should be noted that no cross-validation process is used when dealing with our time series data as
it could lead to select unbalanced mean temperature patterns such as only months with high temperature
which correspond to the summer season or inversely only months with low temperature which correspond to
the winter season.

17The choice of 60% is made so that the increase of a cluster leads to a significant decrease in the inertia.
Figure 11 in appendix A.5 showcases the inertia variation in terms of number of clusters for one of the energy
demand series studied.

18The α can be different regarding the frequency of the data studied.
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a hyperparameter denoted as λ within the error term minimization process, to select the
optimal linear combination among the regressors.

{
qt = β′Xt + εt

min ∑t(qt − q̂t)2 + λ||β||k
(9)

Where qt, is one energy demand variable of T observations, β = [β1, · · · , β2∗K ] is 2 ∗
K × 1 vector of the estimated coefficient of our linear penalization regression, and Xt =[
HV Dqt,w1

t =w1
base

, · · · , HV Dqt,wK
t =wK

base
, CV Dqt,w1

t =w1
base

, · · · , CV Dqt,wK
t =wK

base

]
is a 2 ∗ K × T

regressor weather vector, containing the HDV and the CDV.19 εt is the residuals vector
following a N(0, σ2), where σ2 is variance matrix of the residuals.

The penalisation model can be described as in equation (9) with λ the level of penalization,
the higher λ̂ the more penalized the model, the lower the λ̂ the less penalized the model.
||β||k reflects the norm, which is defined as the LASSO (l1) norm in our approach, qt denotes
the initial seasonal time series and HDVt is the weather indicator. For robustness purposes,
at each iterative step, we run 100 batches of estimation by varying the lambda value in a
range between 0.001 and 1 to test different levels of penalty. Then the mean of the 100
estimations is computed for each variable of the initial pool.

Denoted the optimal sparse penalized β∗, containing some zeros for the weather variables
that are not selected by the LASSO procedure, we defined the GWIqt as:

GW Iqt =
[

1β∗
1 ̸=0HV D

qt,w1
t

=w1
base

, · · · , 1β∗
K

̸=0HV D
qt,wK

t
=wK

base

, 1β∗
1 ̸=0CV D

qt,w1
t

=w1
base

, · · · , 1β∗
K

̸=0CV D
qt,wK

t
=wK

base

]
(10)

where 1β∗
k

̸=0, is a dummies variable taking the value 1, if the corresponding HV Dqt,wk
t

is
selected and 0 if is not.

4 Empirical results

One of the goals of this paper is to develop tools for monitoring the impact of national
policies aimed at reducing energy demand. Our primary application focuses on the analysis
of a monthly database from January 2012 to December 2022. This extensive dataset allows
us to study the general behavior of energy demand in relation to weather variations over a
ten-year period.

4.1 A new baseline temperature

To illustrate how our proposed K-means-based approach estimates the optimal wbase for an
HDVqt variable with respect to a demand qt, we first examine the relationship between the
sectoral energy demands and the temperature variable. Figure 2 shows the relationship

19One could also include all the interactions term between different HDV (or CDV). In our empirical
illustration, none of these terms is selected, we decide for the sake of clarity not to mention that in the
methodology part.
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between ordered sectoral energy demand and ordered temperature, for natural gas and elec-
tricity. In this figure, the different dashed lines represent the extracted base thresholds wbase

reported in Table 4, and the different colours represent the regimes defined by the clustering
algorithm.

Table 4-(a), shows the value for the HDV related to temperature threshold is on average
15°C, for all the energy demand which is different from the thresholds that are commonly used
in France for official statistics adjustment (17°C), the most commonly used in the literature
(18°), or the recommended one by EUROSTAT.20 We will consider, these three HDVs denoted
by HDVtemp=17, HDVtemp=18, and HDVtemp=EU , as our benchmarks for the further analysis
developed in the rest of this section.

As explained in section 3.2.2, we then select a variable based on the LASSO penalization
methods. Table 5 showcases the output from this process, i.e. the optimal linear combination
of HDVtemp and CDVtemp, that is selected in the composition of the GWIqt in equation (10),
for each energy demand qt. Table 5-(a), confirms that 15°C is the optimal threshold and that
none of the three benchmarks is selected.

Table 4: Estimated HDVbase for monthly energy demands based on clustering

Temperature (a)
q

Lowg

t q
Highg

t qLowe
t qMede

t qHighe
t ˆwbase

wbase:temp1 9.34 11.95 8.84 8.47 - 9
wbase:temp2 15.15 15.65 15.15 14.46 12.11 15

Sunlight, Wind, Rain and Cloudiness (b)
q

Lowg

t q
Highg

t qLowe
t qMede

t qHighe
t ˆwbase

wbase:wind1 3.09 3.08 3.09 - - 3
wbase:wind2 3.48 3.28 3.59 3.40 3.31 3.5

wbase:sunlight1 257 294 282 290 314 300
wbase:sunlight2 412 428 412 401 569 400

wbase:rain1 1.72 - 1.94 - - 2
wbase:rain2 2.37 3.43 1.98 2.78 2.37 2
wbase:cloud1 23.54 24.59 23.15 23.47 23.40 24

Notes : Extracted thresholds wbase using the clustering procedure. Monthly energy consumptions and weather
data span 01/2012-12/2022.

20We define HDVtemp=EU as the one recommended by EUROSTAT, constructed as:

HDVtemp=EU =
{

T18 − Tt if Tt < T15
0 otherwise

(11)
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Figure 2: Clustering analysis of monthly energy response to temperature
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t . These figures are a visual representation of the
K-means algorithm results. The dashed lines represent the regime-switching point, or base temperature and the
clusters represent the different regimes. Monthly energy demands and weather data span 01/2012-12/2022.
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Table 5: LASSO estimates for monthly energy demands

Temperature (a)
q

Lowg

t q
Highg

t qLowe
t qMede

t qHighe
t

CDVtemp=15 0,00 0,00 0,00 0,03 0,00
HDVtemp=9 0,00 0,00 0,00 0,00 0,00
HDVtemp=15 0,88 0,37 0,94 0,72 0,40
HDVtemp=17 0,00 0,00 0,00 0,00 0,00
HDVtemp=18 0,53 0,24 0,70 0,00 0,00
HDVtemp=EU 0,00 0,00 0,00 0,00 0,06

Sunlight, Wind, Rain and Cloudiness (b)
q

Lowg

t q
Highg

t qLowe
t qMede

t qHighe
t

HDVwind=3 1,25 0,45 1,37 0,47 0,00
HDVwind=3.5 0,00 0,00 0,00 0,00 0,26

HDVsunlight=300 0,00 0,00 0,00 0,00 0,00
HDVsunlight=400 0,12 0,37 0,06 0,16 0,17

HDVrain=2 0,07 0,00 0,08 0,00 0,00
HDVcloud=24 0,00 0,00 0,00 0,03 0,13

Notes: If the estimates is less than |0.01| the variable is consider as not significant and put to 0. Monthly
energy consumptions and weather data span 01/2012-12/2022.
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4.2 The role of the other weather variables

To highlight the role of the other weather variable, we estimated different wbase for all listed
weather variables (wt) in our dataset (see section 2 for the full list) using the GWI procedure
from section 3. Table 4-(b) shows the estimated threshold for all considered variables, i.e.
cloudiness, rain, sunlight and wind speed.21 Then, our penalty selection procedure shows
potential HDV for mainly the wind speed and the sunlight duration and then the rain or
cloudiness for certain energy demands, as shown in Table 5 -(b). For the link between
cloudiness and electricity demand in the industrial sector, it should be noted that the linked
is reversed as described by Koenig (1979), i.e. that an increase in the demand for electricity
leads to an increase in industrial production and thus in the share of the sky overcast by
clouds, this relationship is describe by figure 16-(c).

After constructing the GWIqt for each qt, we analyze the output of the seasonal regres-
sion process, more precisely, the main output policymakers are interested in is the β in (2)
in section 3.1, indeed these correspond to the weather elasticities for energy demand. In
Table 6 we summarize the obtained estimated β̂-weather coefficients associated with each
GWIqt . These coefficients are expressed in TWh/HDV, for example for the HDVtemp based
on the temperature it can be interpreted as the increase of energy demand in TWh when the
HDVtemp increases of 1°C, ceteris paribus.22

The specification evaluation is made through two criteria: the Akaike Information Crite-
rion (AIC) and the sum of squared residuals. In the set-up of seasonal adjustment, it is less
feasible to use metrics that rely on in and out samples since a priori the target estimation of
the adjusted time series is not known. However Cui et al. (2023) highlighted that AIC model
selection is consistent with weather study if one of the specifications under consideration
nests the true one. Since our methodology induces two preliminary steps to define an initial
pool of robust indicators, the hypothesis is made that one of our specifications nested the true
data-generating process. The AIC, functioning as a penalizing criterion, guides the selection
process, privileging the in-sample specification with the lowest AIC. The Root Mean Square
Error (RMSE) is used to oversee the phenomenon of overfitting inherent in the modelling
exercise.

The first striking result in Table 6 is that the introduction of these HDV, constructed
with wt different from temperature, induces a better specification for any energy demand
that shows a significant response to weather variations. In other words, except for qHighe

t ,
all the estimates are considered less biased when we introduce our GWIqt , since it allows
to reduce both the AIC and the RMSE metrics. In addition to being significant, the in-
troduction of these variables leads to a change in the estimation of the thermal sensitivity
coefficient. For example, for q

Lowg

t the thermal sensitivity is initially estimated to be 0.1037
TWh/HDVtemp=15 and after the introduction of wind speed and sunlight duration it is esti-
mated to be 0.1044 TWh/HDVtemp=15. This is a difference of 0.7 GWh/HDVtemp=15. In other
words, the sensitivity to temperature for q

Lowg

t is underestimated when only temperature is
21Figures showing the relationship between the ordered energy demand and the considered weather variable

are available in Appendix B.3
22For every energy, a first specification without any weather regressors is estimated, to prove the need to

adjust the seasonality from the weather variations.
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considered.
However, the response function differs according to the energy and the sector of de-

mand. Focusing on q
Lowg

t , Table 6-(5) showcases a significant response to HDVwind=3.5 and
HDVsunlight=400, that can respectively be interpreted as the variation of q

Lowg

t in TWh when
the wind speed increase of one unit and when the sunlight duration decrease of one unit.
Both estimators are positive, indicating that an increase in wind speed or a decrease in sun-
light duration leads to an increase in q

Lowg

t demand. However, only the response to wind
speed is significant at the national aggregate level, and not the sunlight duration that which
however seems to have a role to play for residential demand. This result is likely due to
the frequency and territorial aggregation of data for this main study. Indeed, section 5.2
presents a similar estimation but with data at a daily frequency and the sunlight duration
is estimated as statistically significant for qLowe

t . Table 6-(10) presents a significant estimate
for the response function to HDV wind speeds of 3. For both qLowe

t and qMede
t , the model

estimates a significant response function to HDVwind=3, although to a lesser extent than for
qgas

t demands.
These results lead to a particular interpretation for the residential sector, where for both

gas and electricity, it is the perceived temperature rather than the measured temperature
that explains variations in demand. However, the response to this perceived temperature is
different, with a higher elasticity for gas demand than for electricity demand, in line with
the existing literature (see for exemple Alberini et al., 2011)
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Table 6: Monthly estimates of energy demand response to weather sensibility
q

Lowg

t (1) (2) (3) (4) (5)
HDVtemp=17 (-) 0.0973*** (-) (-) (-)

(45.93)
HDVtemp=EU (-) (-) 0.0907*** (-) (-)

(39.62)
HDVtemp=15 (-) (-) (-) 0.1037*** 0.1044***

(48.07) (49.78)
HDVwind=3 (-) (-) (-) (-) 0.0270*

(2.16)
HDVsunlight=400 (-) (-) (-) (-) 0.0002

(1.12)
HDVrain=2 (-) (-) (-) (-) 0.0046

(0.99)
AIC 698 348 378 334 321

RMSE 3.91 0.92 1.04 0.85 0.78

q
Highg

t (6) (7) (8) (9) (10)
HDVtemp=17 (-) 0.0223*** (-) (-) (-)

(10.50)
HDVtemp=EU (-) (-) 0.0209*** (-) (-)

(10.13)
HDVtemp=15 (-) (-) (-) 0.0241*** 0.0235***

(11.20) (11.34)
HDVwind=3 (-) (-) (-) (-) -0.0293**

(-2.66)
HDVsunlight=400 (-) (-) (-) (-) -0.0001

(-0.45)
AIC 449 372 376 366 359

RMSE 1.40 1.00 1.02 0.97 0.92

qLowe
t (11) (12) (13) (14) (15)

HDVtemp=17 (-) 0.0317*** (-) (-) (-)
(36.49)

HDVtemp=EU (-) (-) 0.0300*** (-) (-)
(33.07)

HDVtemp=15 (-) (-) (-) 0.0341*** 0.0342***
(40.28) (39.07)

HDVwind=3 (-) (-) (-) (-) 0.0085
(1.75)

HDVsunlight=400 (-) (-) (-) (-) 0.0001
(0.22)

HDVrain=2 (-) (-) (-) (-) 0.0036
(1.90)

AIC 430 133 155 111 104
RMSE 1.27 0.35 0.38 0.32 0.31

qMede
t (16) (17) (18) (19) (20) (21)

HDVtemp=17 (-) 0.0072*** (-) (-) (-) (-)
(12.62)

HDVtemp=EU (-) (-) 0.0069*** (-) (-) (-)
(12.54)

HDVtemp=15 (-) (-) (-) 0.0079*** 0.0083*** 0.0086***
(13.71) (14.73) (18.47)

CDVtemp=15 (-) (-) (-) (-) 0.0050*** 0.0062***
(5.61) (7.27)

HDVwind=3 (-) (-) (-) (-) (-) 0.0106***
(4.04)

HDVsunlight=400 (-) (-) (-) (-) (-) 0.0001
(1.42)

HDVcloud=24 (-) (-) (-) (-) (-) 0.0094
(0.27)

AIC 141 41 41 33 2 -19
RMSE 0.38 0.25 0.25 0.24 0.21 0.19

qHighe
t (22) (23) (24) (25) (26)

HDVtemp=17 (-) 0.0020*** (-) (-) (-)
(7.00)

HDVtemp=EU (-) (-) 0.0019*** (-) (-)
(7.09)

HDVtemp=15 (-) (-) (-) 0.0021*** 0.0021***
(7.19) (6.97)

HDVwind=3.5 (-) (-) (-) (-) -0.0001
(-0.05)

HDVsunlight=400 (-) (-) (-) (-) 0.0000
(0.91)

HDVcloud=24 (-) (-) (-) (-) -0.0030
(-0.81)

AIC -61 -102 -103 -103 -99
RMSE 0.168 0.142 0.141 0.141 0.139

Notes: The estimates are from a regSARIMA regression with monthly energy consumption level in TWh as
the dependent variable. The table presents the estimates for weather components that significantly impact
energy consumption. However. the model also estimates fixed SARIMA components. i.e. the cyclic elements.
and fixed control variables for business days: leap year. weekend and holidays effects. For the SARIMA
component. large order of polynomials δ. Φ and Θ are fix along the defined using the Autocorrelation
Function (ACF) and Partial Autocorrelation Function (PACF) (see Figure 7). thus the process is defined as
(1.0.1)(0.1.1). Monthly energy consumptions and weather data span 01/2012-12/2022.
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4.3 Economic implications

This section presents two principal economic implications of the empirical results. Firstly,
the shape of the relationship between energy demand and weather variables is analysed.
This contributes to a body of literature that characterises consumer behaviour in response to
temperature variations across a year (see for exemple Engle et al., 1986; Dubin, 2008). This
provides insights into the need for heating and/or cooling, as well as the existence of a so-
called comfort zone where energy use is not needed to regulate building temperature. We will
then discuss the impact on the estimated weather elasticity, which is crucial for policymakers
and energy providers as it informs strategies for energy supply management and infrastructure
planning (see for example Chaton, 2024; Giraudet et al., 2021; Thao Khamsing et al., 2016).
By quantifying the manner in which energy demand responds to temperature fluctuations, it
facilitates the development of more accurate predictive models, which can be used to mitigate
the effects of extreme weather events on energy systems (see Sgarlato and Ziel, 2023). In
conclusion, our findings have significant implications for energy policy, climate adaptation
strategies and economic planning.

Fonctional form of France sectoral energy demand

One of the main interests is the response of energy demand to the temperature, we mainly
focus on the HDVtemp.23 First looking at figure 3 - (c), the relationship between qHighe

t

and wtemp
t is almost constant which confirms the non-correlation between the two variables,

already exhibited in Table (3). Thus the estimated thermo-sensitivity on Table 6 is the
smallest one: 0.0021 TWh/HDVtemp=15. Second, Figures 3-(a), 3-(d) and 3-(e) showcase a
response function to the temperature that can be defined as an L-shaped with one balance
base temperature and a comfort regime with no response to a variation in temperature.
Indeed, from Figures 2-(a), 2-(b) and 2-(d) with the clustering algorithm results, it presents
an initial response function to temperature with two heating regimes and a comfort zone
and thus two balance points: 9°C and 15°C (see Table 4), in line with the functional form
for a residential panel defined by Dubin (2008). In these figures (2-(a), 2-(b) and 2-(d)),
the sensitivity appears to be lower between 9°C and below, indicating that a decrease of
one degree Celsius results in a lowest increase in energy demand. The primary assumption
regarding this behaviour is that agents reach their budget constraint after a certain amount
has been spent on heating and are thus less inclined to demand more energy. However, the
selection process output in Table 5 put forward that the balanced point at 9°C is not as
statistically significant as a balance point at 15°C. Table 6 shows that the residential sector
is the one with the strongest thermo-sensitivity respectively 0.1044 TWh/HDVtemp=15 and
0.0342 TWh/HDVtemp=15 for q

Lowg

t and qLowe
t . Third, looking at Figure 3-(b), the temperature

response function from qMede
t can be described as a classical V-shaped with a single balance

base temperature at 15°C. This shape has been described by Mitchell (1984) and corresponds
to a single balance point between heating and cooling behaviour. From Figure 2 - (b) with
the clustering algorithm results, it presents an initial response function to temperature with

23Figures showing the function response to the other significant weather variable are available in Appendix
B.4
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two heating regimes and a cooling regime and two associated balance points: 9°C and 15°C
(see Table 4). However, the selection process output in Table 5 once more put forward that
the balanced point at 9°C is not as statistically significant as the balance point at 15°C.
This Table also allows to assess the first significance of the introduction of a CDV based on
temperature for the response function to temperature from qMede

t . This thermo-sensitivity to
high temperature is confirmed by the estimation in Table 6 where the estimated coefficient
is 0.0061 TWh/CDVtemp=15 while the estimation for the sensitivity to low temperature is of
0.0086 TWh/HDVtemp=15.

Weather elasticities estimate

To illustrate the importance of finding the optimal specification to adapt to weather vari-
ations, we can make a simple comparison of the estimated thermo-sensitivity coefficients
between Table 6-(2) and Table 6-(5), as reported in Table 7. For q

Lowg

t , the difference re-
sults in a 7.3% decrease in thermosensitivity, which means that using HDVtemp=17 instead
of the optimal GWI

q
Lowg
t

underestimates up to 7.3% of thermosensitivity, and this fraction
of energy variability could be incorrectly explained by other factors such as price and so-
cioeconomic components, or remain as unexplained residuals. For example, December 2015
was the warmest December in the 2012-2022 period, resulting in negative HDVtemp relative
to the average December HDVtemp. Thus, for December 2015, using the elasticity based on
HDVtemp=17 gives an estimate of energy demand due to temperature of -11.06 TWh. This
demand is underestimated by 7.3% compared to the use of GWIqt which estimates -11.86
TWh. There is a decrease in demand of 0.80 TWh that is not due to weather variations
if the weather vector (GWIqt) is not properly optimized. 0.8 TWh also corresponds to the
production of more than one and a half nuclear reactors per month in France (0.5TWh),
underlining the role of optimal weather elasticity estimates for infrastructure planning.

Table 7: Decrease in the estimated thermo-elasticities between GWIqt and HDVtemp=17

Sectors Decrease

q
Lowg

t -7.3 %
q

Highg

t -5.4 %

qLowe
t -7.2 %

qMede
t -19.4 %

qHighe
t -5.0 %
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Figure 3: Linear normalized optimal estimation responses to temperature
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Notes : (a) qLowe
t (b) qMede

t (c) qHighe
t (d) q

Lowg

t (e) q
Highg

t - These figures are a normalised visual representation
of the linear estimations of thermo sensitivity for the different energy demand. This representation only allows to
take into consideration the shape of the relationship but does not correspond to the exact fitted/estimated data on
the regression process. Monthly energy demands and weather data span 01/2012-12/2022.
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5 Robustness analysis

This section provides a robust analysis of our GWI approach to, time subsample, daily and
spatial data, considering 12 administrative regions of France.24

5.1 Rolling time window analysis

Section 4.1 only presents the penalisation process for the monthly aggregated level from
01/2012-12/2022, thus a rolling exercise of ten years moving windows from 2000 to 2022
allows an overview of the variations of the optimal composition of the GWIqt index for each
qt considered.

Figure (4) illustrate the outcomes of the rolling LASSO exercise concerning the HDVtemp

selection. For a base temperature of 17°C, the rolling analysis suggests this temperature
as potentially optimal for q

Lowg

t during the 2000-2011 period. The LASSO algorithm does
not penalize this variable to zero until 2018, indicating its sustained relevance over time.
In contrast, for a base temperature of 18°C, the rolling exercise identifies it as a significant
base temperature for both q

Highg

t and qHighe
t . Nevertheless, the demand pattern linked to this

temperature exhibits a weaker correlation with temperature variations, as demonstrated in
Table 3. This reduced robustness in identifying an optimal base temperature elucidates why
18°C is selected for q

Highg

t in Table 5.
This section emphasizes the need to tailor the threshold to the specific sub-sample being

studied, as different time windows could result in different behavioral responses to temper-
ature. This could raise concerns about the comparability of the policy evaluation across
different time-varying subsamples. To illustrate, a substantial policy investment in energy
efficient buildings should result in a shift to a lower baseline temperature due to increased
building insulation.

24The 12 administrative regions considered are the metropolitan administrative regions, without Corsica
that is not served by ENEDIS for qLowe

t .
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Figure 4: HDVtemp LASSO estimates on time-varying window

0.0

0.2

0.4

0.6

0.8

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

q tLo
w

e  (
LA

S
S

O
)

HDVtemp=15 HDVtemp=17 HDVtemp=18 HDVtemp=EU

(a)

0.0

0.1

0.2

0.3

0.4

0.5

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

q tM
ed

e  (
LA

S
S

O
)

HDVtemp=15 HDVtemp=17 HDVtemp=18 HDVtemp=EU

(b)

0.0

0.2

0.4

0.6

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

q tH
ig

h e
 (

LA
S

S
O

)

HDVtemp=15 HDVtemp=17 HDVtemp=18 HDVtemp=EU

(c)

0.0

0.2

0.4

0.6

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

q tLo
w

g  (
LA

S
S

O
)

HDVtemp=15 HDVtemp=17 HDVtemp=18 HDVtemp=EU

(d)

0.0

0.2

0.4

0.6

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

q tH
ig

h g
 (

LA
S

S
O

)

HDVtemp=15 HDVtemp=17 HDVtemp=18 HDVtemp=EU

(e)
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t and (e) q
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t - Data span the period 2000-2022, one
month added at each rolling step.
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5.2 Daily data

To study the robustness of our approach to higher frequency, we applied the same procedure as
in section 4 to the daily data, to decompose the optimal base temperature and possible other
weather regressors. Recall that at the daily frequency, only residential electricity demand is
available.

We present the first step using our K-means procedure and it leads to defining once again
a base temperature of 15°C (see Table 8) and Figure 5 that showcases the non-linear link
between energy demand and temperature is similar to the estimated one using the monthly
dataset as presented with Figure 2 -(a).25 However, in opposite to monthly data, Figure
5 shows a stronger variability in the demand level for a constant temperature, inducing
significant effects from other sources than temperature.

Table 8: HDV estimated threshold for daily electricity demand

wbase:1 wbase:2

qDailye
t temp 15.27 10.38

qDailye
t sunlight 552.72 460.70

qDailye
t wind 4.36 4.30

qDailye
t rain 5.24 4.19

Notes : The base indicators are defined using K-means algorithm in a two-
dimensional environment: energy consumption and level of the indicator.
The table shows the base indicator for the regime-switching between the
non-heating and heating period. Daily data span 01/01/2019-31/12/2023

Figure 5: Clustering analysis of daily low tension electricity response to temperature
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Notes : This figure is a visual representation of the K-means algorithm results for three different regimes. The vertical red line
represents the regime-switching point, or base temperature, between the non-heating and heating periods. Daily energy demand
span the period 01/01/2019-31/12/2023.

25The figures for the other weather variables are available upon request.
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Table 9: Daily estimates of low tension electricity response to weather sensibility

(1) (2) (3) (4)
HDVtemp=17 0,0139*** (-) (-) (-)

(52.33)
HDVtemp=EU (-) 0,0130*** (-) (-)

(50.94)
HDVtemp=15 (-) (-) 0,0149*** 0,0153***

(53.85) (54.84)
HDVwind=4 (-) (-) (-) 0,0063***

(5.33)
HDVsunlight=300 (-) (-) (-) 0,0001***

(3.55)
AIC -6948 -6898 -7003 -7053

RMSE 0.0224 0.0228 0.0220 0.0216
Notes: The estimates are from a regSARIMA regression with daily energy consumption level in TWh as
the dependent variable. The table presents the estimates for weather components that significantly impact
energy consumption. The estimates for HDVtemp variables can be interpreted as the thermo-sensibility to
cold temperatures. Then, the estimated coefficients to the HDVwind variables can be interpreted as the wind-
sensibility to strong wind speed and the HDVsunlight variables as the sunlight-sensibility to lower sunlight
duration. However, the model also estimates the SARIMA components, i.e. the cyclic elements, and control
variables for business days: leap year, weekend and holidays effects. Daily energy consumption span the
period 01/01/2019-31/12/2023.

Table 9 confirms that the optimal specification for the regressor variable wt at the daily
level is to introduce a HDVtemp=15 with a base temperature of 15°C. It leads to the estimation
with the lowest AIC and gives an estimate of 0.0153 TWh/HDVtemp=15, meaning that an
increase of one heating degree day, i.e. a decrease in temperature, induces an increase in low
voltage electricity demand of 0.0153 TWh. In addition, an increase of one HDVwind, i.e. an
increase in wind speed, and one HDVsunligh, i.e. a decrease in sunlight duration, increase the
low voltage power demand by 0.0065 TWh and 0.0001 TWh, respectively.

Figure 5 shows that the relationship between temperature and low voltage energy de-
mand has a higher variability on a daily frequency than on a monthly frequency, especially
for lower temperatures. This implies a variability in demand levels for a constant temper-
ature. To explain this variability, we apply a K-means clustering procedure to a reduced
form of the vectors: gDailye

t ; [temp]; [wind]; [sunlight]. The dimension reduction technique
condenses information from multiple dimensions into a lower dimensional representation to
better capture the essence of high dimensional interactions, which is critical since K-means
performance can degrade in higher dimensional spaces.

Various dimension reduction techniques have been developed to preserve different prop-
erties of the original data. These techniques range from linear projections, such as Principal
Component Analysis (PCA) Wold et al. (1987), to locally linear and nonlinear methods,
such as t-Distributed Stochastic Neighbor Embedding (t-SNE) Van Der Maaten and Hinton
(2008). In contrast to linear methods, t-SNE focuses on preserving local similarities between
data points in high-dimensional space, which facilitates effective representation in a lower-
dimensional space. Applying K-means to the reduced t-SNE form of our vectors reveals four
distinct clusters: a summer cluster, a transition cluster, and two separate winter clusters.
The winter clusters correspond to days with low temperatures and wind, and days with low
temperatures and longer sunlight duration. These clusters reflect an increase or decrease in
demand relative to the average demand at constant temperature. Thus, to fully account for
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the demand induced by climate variability at the daily level, it is crucial to include the effects
of wind and sunlight. Furthermore, the transition cluster is centered around a temperature
of 15°C (Figure 18 -(a)), which is consistent with the overall results of the study.

Figure 6: Clustering analysis of daily low tension electricity demand via tSNE dimension reduction
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Notes : This figure is a visual representation of the K-means
algorithm results on a four-dimensional dataset reduced to two-
dimensions via the t-SNE non-linear method. It allows to put
forward the effect of sunlight duration and wind speed during
winter compared to temperature and electricity demand. Daily
energy demand span the period 01/01/2019-31/12/2023.
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5.3 Regional data

This section used a daily disaggregated dataset for each of the 12 regions, to unravel the
optimal weather vectors across France. We present the first step using the K-means procedure
and it defines an average, normalised, base temperature of 15°C as reported in Table 10.
However, the regional decomposition shows a non-continuity in the base temperature detected
for each region. In particular, the region Occitanie, and Provence-Alpes-Côte d’Azur shows
a HDVtemp and CDVtemp related to the temperature effects. Appendix B.1 shows how to
optimize the base temperature for CDVtemp with our approach when the response function
can be described as a U-shaped relationship as is the case for Provence-Alpes-Côte d’Azur,
meaning that there is an increase in energy demand when temperatures are high for these
regions.

Furthermore, Table 10 illustrates the baseline temperature using the clustering algorithm
and the SETAR procedure. The results demonstrate that the K-means approach produces a
more robust estimate in the presence of spatial heterogeneity. The columns labelled RMSE
show the root mean square error (RMSE) for the regSARIMA process using the two methods.
The results demonstrate that the temperatures extracted by K-means led to a more optimal
estimation than with SETAR. This indicates that clustering methods are more robust to
spatial heterogeneity. However, both methods produce comparable results at the aggregate
level (see appendix B.2 for details).

Table 10: Estimated base temperature for regionals HDV

HDV K−means
temp HDV SET AR

temp

estimated round RMSE estimated round RMSE
Grand Est 13.95 14 0.91 14.46 14 0.91
Normandie 14.10 14 1.79 12.93 13 1.92
Hauts-de-France 14.28 14 1.33 13.27 13 1.41
Bretagne 14.32 14 1.88 15.27 15 1.77
Auvergne-Rhône-Alpes 14.61 15 1.35 17.93 18 1.46
Centre-Val de Loire 14.69 15 1.67 12.86 13 1.88
Bourgogne-Franche-Comté 14.73 15 1.23 16.03 16 1.27
Pays de la Loire 14.91 15 1.79 16.80 17 1.75
Occitanie 15.18 15 1.56 19.14 19 1.50
Île-de-France 15.20 15 1.32 12.73 13 1.51
Nouvelle-Aquitaine 16.00 16 1.49 18.69 19 1.60
Provence-Alpes-Côte d’Azur 16.08 16 1.38 19.20 19 1.42
Mean 14.83 15 1.47 15.86 16 1.53
Weighted Mean 14.94 15 - 16.01 16 -
Notes : The base temperatures are defined using K-means algorithm in a two-dimensional environment:
energy consumption and level of temperature. Then, the lowest temperature of each regime is extracted and
registered as the base temperature for regime switching. The table shows the base temperature for the regime-
switching between the non-heating and heating periods. The national weighted mean is computed using the
number of housing recorded on the French national census from 2020. Regional daily energy consumption
span the period 01/01/2022-31/12/2023.

Table 11 presents the estimated weather coefficients with a regSARIMA specification.
For clarity purposes, only the estimated coefficients are reported and if the estimate was not
significant than it has been set to 0. In terms of the level of the estimates, it represents
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the variation of demand in kWh per household for a variation of one unit from the differ-
ent weather indicators. Table 11 is shorted according to the thermo-sensitive estimate level,
from the lowest to the highest one. Thus, the strongest thermo-sensitivity coefficient is esti-
mated for the region Normandie and the smallest for the region Grand Est, highlighting the
heterogeneity in the estimated thermo-sensitivity, see Figure ?? for a visual representation.

Regarding the GWIqt , there is heterogeneity depending on the climate zone that the
administrative region depends on. First, the correlation table (see Table 20 in appendix
A.3) shows that the temperature correlation is strong for all regions, but can be relatively
smaller for regions from hot climatic zones, where there is probably a cooling degree effect.
Then, the sunlight and wind correlations are on average lower than at the national level.
The estimation on Table 11 can be interpreted in terms of GWIqt , the estimation allows
us to develop our interpretation in terms of the pool of significant weather indicators for
each region. First, we again identify two regions where there is a significant cooling effect:
Occitanie and Provence-Alpes-Côte d’Azur. These two regions are all located in hot climatic
zones in the southern metropolitan area of France. Secondly, the effect of sunlight becomes
insignificant at this spatially disaggregated level, and finally, wind speed is significant with
a positive estimate, meaning that an increase in wind speed leads to an increase in demand,
as at the other time and spatial frequency.

Table 11: Regional daily estimates of low tension electricity response to weather sensibility

HDV K−means
temp CDVtemp=21 HDVwind=3.5 HDVsunlight=400 HDVrain=2

Grand Est 0.1743 0.0000 0.1317 0.0000 0.0000
Auvergne-Rhône-Alpes 0.1880 0.0000 0.1122 0.0000 0.0000
Bourgogne-Franche-Comté 0.2055 0.0000 0.2075 0.0000 0.0000
Nouvelle-Aquitaine 0.2225 0.0000 0.1724 0.0000 0.0000
Occitanie 0.2464 0.0767 0.1431 0.0000 0.0000
Provence-Alpes-Côte d’Azur 0.2509 0.1533 0.1492 0.0000 0.0000
Île-de-France 0.2705 0.0000 0.2547 0.0000 0.0000
Hauts-de-France 0.3188 0.0000 0.1584 0.0000 0.0000
Bretagne 0.3523 0.0000 0.0000 0.0000 0.0000
Pays de la Loire 0.3717 0.0000 0.2117 0.0000 0.0000
Centre-Val de Loire 0.4018 0.0000 0.3246 0.0000 0.0000
Normandie 0.4159 0.0000 0.2162 0.0000 0.0000

Notes : The estimates are from a regSARIMA regression with regional daily energy demand level in kWh/household as
the dependent variable. For comprehension purposes, the non-significant estimates have been reduced to 0. The table
presents the estimates for weather components that significantly impact energy demand. The estimates for HDVtemp
variables can be interpreted as the thermo-sensibility to cold temperatures. Then, the estimated coefficients to the
HDVwind variables can be interpreted as the wind-sensibility to strong wind speed, HDVsunlight variables as the
sunlight-sensibility to lower sunlight duration and HDVrain as the rain-sensibility to an increase in the millimetres
of rain during 24h. However, the model also estimates the SARIMA components, i.e. the cyclic elements, and control
variables for business days: leap year, weekend and holidays effects. Regional daily energy demand span the period
01/01/2022-31/12/2023.
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6 Conclusion

The need for reliable comparisons in energy demand analysis necessitates the adjustment
of energy demand for weather variations, allowing for a more accurate isolation of socio-
economic factors. Traditional approaches, such as the use of Heating Degree Days (HDD)
with a base temperature commonly set at 18°C, have lacked robust methodological justifica-
tion, particularly in the context of evolving climatic conditions and spatial and sector het-
erogeneity. Our study challenges these traditional methods by demonstrating that the base
temperature is not constant over time and is not uniform across different regions or economic
sectors. Furthermore, relying solely on temperature as the indicator for weather variations
is insufficient, as other variables such as wind speed and sunlight duration also significantly
impact energy demand. To address these limitations, we introduced the General Weather
Indicator (GWI), which optimally combines heating days variable (HDV) and cooling days
variable (CDV) across multiple weather factors among temperature, wind, sunlight duration,
rain and cloudiness. For each variable, we extract the optimal(s) threshold(s) that capture
the non-linear relationship between the energy demand and this variable using K-means.
Then for each energy demand we select the optimal linear combination between heating
and cooling variables using a LASSO penalisation. For each specification, we perform an
in-sample adjustment based in regSARIMA modeling and we select the optimal specification
according to different criteria likelihood-based (AIC) and forecasting error-based (RMSE).
This method provides a robust and adaptable methodology for analyzing energy demand
response to weather variations.

Applying this methodology to France’s electricity and natural gas demand, we found that
the optimal base temperature for HDV is 15°C, a significant deviation from the traditionally
used 17°C or 18°C. Moreover, the significance of wind and sunlight, mostly in the residen-
tial energy demand, emphasizes the importance of felt temperature rather than measured
temperature for households. Then, more broadly, our findings reveal an L-shaped response
to temperature, with a heating and a comfort period, at the exception of the tertiary sector
and southern regions where air conditioning usage is more prevalent inducing the apparition
of a cooling period during summer. The implications of our study are important for en-
ergy policy, climate adaptation strategies, and economic planning. By estimating optimaly
weather-related elasticities for energy demand at daily and monthly levels across different
sectors and regions, we provide a valuable tool for policymakers and researchers. The esti-
mation of these elasticities is of primary importance to calibrate the micro-simulation models
which are available for France. This tool enhances the precision of energy consumption anal-
yses in the face of climate variability, supporting the development of more effective strategies
to meet emission reduction targets and improve infrastructure planning.

Overall, our study underscores the critical importance of dynamic, region-specific and
sector-specific adjustments in energy demand models, thereby improving the accuracy of
policy assessments and contributing to the broader goals of climate change mitigation and
sustainable energy management.
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A Appendix

A.1 Litterature review on HDD/CDD

Table 12: Panel of base temperatures found in the literature and associated justifications
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A.2 Data sources

Table 13: Variables used, sources and transformations
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A.3 Descriptive statistics

A.3.1 Monthly data

Figure 7: ACF and PACF for Electricity and Natural gas demand
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Table 14: Descriptive statistics of demand (TWh)

N Mean St. Dev. Min Max

qLowg

t 288 25.71 17.05 5.33 64.16
qHighg

t 288 14.11 3.41 8.12 22.41

qLowg

t 288 15.53 4.93 8.89 27.86
qMedg

t 288 12.66 1.73 7.08 16.27
qHighg

t 288 7.59 1.28 4.73 9.96
qgas

t 288 39.82 20.02 14.34 84.17
qelec

t 288 35.78 5.85 27.65 51.59
Notes : The descriptive statistics are reported as TWh consumption. The
variables qgas

t and qelec
t represent the sums of the respective variables qLowg

t ,
qHighg

t and qLowg

t ,qMedg

t ,qHighg

t . The monthly data span the period 01/2012-
12/2022.

Table 15: Share of economic sector regarding the energy delivery mode - Median

Residential Service Industrial Other Total
qLowe

t 79,6% 16,0% 1,5% 2,9% 100%
qMede

t 0,0% 57,5% 39,0% 3,3% 100%
qHighe

t 0,0% 18,8% 81,2% 0,0% 100%
q

Lowg

t 46,4% 26,2% 27,2% 1,3% 101%
q

Highg

t 0,0% 6,2% 93,8% 0,0% 100%
Notes : The table presents the breakdown of energy consumption by delivery
mode into the sectorial consumption mode. This distribution rely on a SDES
annual survey of energy suppliers and is computed on the 2018-2022 vintage.

Table 16: Share of delivery mode for each energy demand - Median

qLowe
t qMede

t qHighe
t

qElec
t 43.44% 35.23% 21.33%

q
Lowg

t q
Highg

t

qGas
t 64.62% 35.38%

Notes : The table presents the breakdown of aggre-
gate energy demand time series regarding the delivery
mode.
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A.3.2 Daily data

Figure 8: Daily electricity demand in TWh
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Table 17: Descriptive statistics electricity demand (< 36 kVA) in TWh

N Mean St. Dev. Min Max

qDailye
t 1096 0.524 0.168 0.327 0.981

qMonthlye
t 36 15.95 4.87 10.64 26.22

qLow
t 36 15.92 4.88 10.59 26.04
Notes : The table presents the data distribution at the daily level qDailye

t for
the 1096 days available on the dataset. The same statistics are computed at
the monthly aggregate level qMonthlye

t on the series and compared with the
qLowe

t monthly series from the main study. Both series from different sources
and on different time frames describe similar energy consumption behaviour.

43



Table 18: Correlation between weather indicators and energy time series - Daily data

temp sunlight wind rain

qDailye
t -0.912 -0.548 0.221 0.042

0.000 0.000 0.000 0.162
Notes : The table show the correlation coefficients
and the p-value associated. The p-values represent the
probability that the null hypothesis, which represents a
null correlation, is non-rejected. Thus a null p-value is
interpreted as a correlation significantly different from
0.
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A.3.3 Daily regional data

Figure 9: France 12 administrative regions
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Table 19: Descriptive statistics regional electricity demand (< 36 kVA) in TWh

N Mean St. Dev. Min Max
Centre-Val de Loire 730 0.021 0.008 0.013 0.041
Bourgogne-Franche-Comté 730 0.022 0.007 0.015 0.042
Normandie 730 0.028 0.011 0.017 0.057
Bretagne 730 0.029 0.011 0.018 0.058
Grand Est 730 0.031 0.010 0.020 0.056
Pays de la Loire 730 0.032 0.012 0.020 0.063
Hauts-de-France 730 0.039 0.013 0.024 0.074
Provence-Alpes-Côte d’Azur 730 0.048 0.014 0.032 0.086
Nouvelle-Aquitaine 730 0.050 0.017 0.033 0.096
Occitanie 730 0.052 0.017 0.035 0.100
Auvergne-Rhône-Alpes 730 0.063 0.021 0.042 0.122
Île-de-France 730 0.074 0.025 0.043 0.138

Notes : The table presents the data distribution at the daily level for 12
different regions and for the 730 days available on the dataset. The region
"Centre-Val de Loire" is the one with the lowest mean consumption over
a day, with 0.021 TWh and the region "Ile-de-France" is the one with the
highest mean consumption over a day with 0.074TWh.

Table 20: Correlation between weather indicators and energy time series - Daily regional data

temp sunlight wind rain

Île-de-France -0.906 -0.493 0.168 -0.010
(0.000) (0.000) (0.001) (0.848)

Centre-Val de Loire -0.897 -0.522 0.181 -0.097
(0.000) (0.000) (0.001) (0.065)

Bourgogne-Franche-Comté -0.904 -0.494 0.182 -0.085
(0.000) (0.000) (0.000) (0.105)

Normandie -0.891 -0.484 0.205 0.038
(0.000) (0.000) (0.000) (0.467)

Hauts-de-France -0.899 -0.494 0.183 0.015
(0.000) (0.000) (0.000) (0.780)

Grand Est -0.911 -0.529 0.214 -0.045
(0.000) (0.000) (0.000) (0.393)

Pays de la Loire -0.875 -0.500 0.119 0.016
(0.000) (0.000) (0.023) (0.767)

Bretagne -0.870 -0.493 0.111 0.101
(0.000) (0.000) (0.034) (0.055)

Nouvelle-Aquitaine -0.866 -0.391 0.056 0.011
(0.000) (0.000) (0.285) (0.839)

Occitanie -0.826 -0.345 0.063 0.047
(0.000) (0.000) (0.233) (0.367)

Auvergne-Rhône-Alpes -0.888 -0.484 0.018 -0.087
(0.000) (0.000) (0.732) (0.098)

Provence-Alpes-Côte d’Azur -0.784 -0.329 0.145 0.002
(0.000) (0.000) (0.005) (0.970)

Notes : The table show the correlation coefficients and the p-value associ-
ated. The p-values represent the probability that the null hypothesis, which
represents a null correlation, is non-rejected. Thus a null p-value is inter-
preted as a correlation significantly different from 0.
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A.4 Functional form for response to temperature

Figure 10: (a) V-shaped relationship - (b) U-shaped relationship
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Figure 11: Inertia variation between cluster N and N − 1 for qLowe
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B Complementary results

B.1 Base temperature for Cooling Degree Days

This appendix presents the classification pattern to define using the K-means methodology
of the study to be able to take into consideration the energy demand pattern due to high
temperature and cooling behaviour, when the response function to temperature can de de-
scribe by a U-shaped pattern. It means that the response function has at leas three broad
regimes namely : heating and cooling regimes and a so-called comfort zone where the re-
sponse function is constant. Figure 12 showcases the demand for electricity demand on the
low tension line for the "Provence-Alpes Côte d’Azur" region of France. It depicts a five
regimes adaptation, the base temperature is still 16.1°C for the HDD and for the CDD the
method estimates a base temperature of 22.9°C meaning that for days when the average
temperature is greater than 22.9°C in this particular region then there is a cooling behaviour
and the CDD will be different from zero.26

Figure 12: Provence-Alpes-Côte d’Azur low tension Electricity
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Notes : This figure is a visual representation of the K-means algorithm results for five
different regimes. The vertical red line represents the regime-switching point, or base
temperature. Daily energy demand span the period 2022-2023 for Provence-Alpes-Côte
d’Azur region.

26For reference, between 2022 and 2023 in Provence-Alpes-Côte d’Azur both months of July had every day
an average temperature greater than 22.9°C.
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B.2 Threshold detection via SETAR procedure

An initial methodology was to draw upon Carcedo and Vicéns-Otero (2005) and Bessec
and Fouquau (2008), which employs a Smooth Transition AR (STAR) method based on a
predetermined definition of the data generation function. However, a smooth method induces
to define a priori the function that best describes the relation between the series. Since we
want our method to be also useful for other indicators than the temperature, our proposal
relies on the adoption of a non-smooth methodology grounded in the method of multivariate
Threshold Vector Autoregression (TVAR) from Lo and Zivot (2001) and based on the Self-
extracting AR (SETAR) modelling paradigm.

A TVAR model extends the traditional VAR framework by incorporating threshold effects,
allowing for nonlinear dynamics in the relationships between variables. This approach is
particularly useful when the relationships between variables are subject to structural changes
or regime shifts. In a multivariate TVAR model, the data is divided into different regimes
or states, and separate VAR models are estimated for each regime. The key feature of
a multivariate TVAR model is the identification of thresholds that determine the switch
between different regimes. For reference, in a univariate dimension, the SETAR modelling
with two regimes and one threshold can be describe as in (12) and allows to estimate the
coefficients ϕ1 and ϕ2 but also the threshold c that correspond to the transition between both
regimes.

zt =
{

ϕ1zt−1 + ϵ1t if zt−1 ≤ c
ϕ2zt−1 + ϵ2t if zt−1 > c

(12)

Estimating the threshold parameter is not obvious due to its representation as a discontinuous
function. A viable approach involves concentrating the objective function since the slope
estimators given a known threshold can be estimated by ordinary least squares (OLS), the
problem can be simplified by concentrating out the minimization problem through ϕ(Θ) and
the corresponding sum of squares SSR(Θ). This leads to the following objective function:

Θ̂ = arg min
Θ

SSR(Θ) (13)

Minimization of (13) is done through a grid search: values of the threshold are sorted, the
SSR is estimated for each selected threshold and the one that minimize the SSR is taken as
the estimator.

Tables 21 showcases thresholds levels estimated with this first method.
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Table 21: Estimated HDVbase for monthly energy demands based on SETAR

Temperature (a)
q

Lowg

t q
Highg

t qLowe
t qMede

t qHighe
t ˆwbase

wbase:temp1 10.79 9.87 10.02 13.00 13.00 10
wbase:temp2 15.15 15.50 15.15 18.63 15.79 15

Sunlight, Wind, Rain and Cloudiness (b)
q

Lowg

t q
Highg

t qLowe
t qMede

t qHighe
t ˆwbase

wbase:wind1 3.20 3.16 3.16 3.14 3.14 3
wbase:wind2 3.63 3.53 3.52 3.58 3.49 3.5

wbase:sunlight1 281 286 323 379 286 300
wbase:sunlight2 395 395 412 461 395 400

wbase:rain1 1.58 1.58 1.58 1.58 1.42 1.5
wbase:rain2 2.21 2.38 2.21 2.34 2.34 2
wbase:cloud1 25.14 23.33 24.42 24.42 24.42 24

Notes : Extracted thresholds wbase using the SETAR procedure. Monthly energy consumptions and weather
data span 01/2012-12/2022.
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B.3 Threshold detection via K-means beyond temperature
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Figure 13: Clustering analysis of monthly energy response to sunlight
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means algorithm results. The dashed lines represent the regime-switching point the clusters represent the different
regimes.
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Figure 14: Clustering analysis of monthly energy response to wind
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Figure 15: Clustering analysis of monthly energy response to rain
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Figure 16: Clustering analysis of monthly energy response to cloudiness
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B.4 Functional form beyond temperature

Figure 17: Linear normalized optimal estimation response to wind
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t - These figures are a normalised visual representation of the
linear estimations of wind sensitivity for the different energy demand. This representation only allows to take
into consideration the shape of the relationship but does not correspond to the exact fitted/estimated data on the
regression process. Monthly energy demands and weather data span 01/2012-12/2022.
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B.5 Variables distribution for tSNE clustering

Figure 18: Weather variables distribution based on clustering method via tSNE dimension reduction

0.00

0.05

0.10

0.15

0 10 20 30
Temperature (°C)

de
ns

ity

summer transition winter & sunlight winter & wind

(a)

0.0

0.2

0.4

0.6

2 4 6 8
Wind at 10m

de
ns

ity

summer transition winter & sunlight winter & wind

(b)

0.000

0.001

0.002

0.003

0.004

0.005

0 250 500 750
Sunlight

de
ns

ity

summer transition winter & sunlight winter & wind

(c)

Notes : (a)Temperature (b) Wind (c) Sunlight. These figures are a visual representation of the distribution from
weather variables, regarding the cluster determined by the K-means algorithm on the reduced form by t-SNE
of the daily electricity demand. This figure allow to define the name of each cluster: for example, the cluster
"winter & sunlight" has a temperature distribution centred around 9°C, a sunlight distribution centred around 500
minutes/24h and very low level of wind and rain. Daily energy demand span the period 01/01/2019-31/12/2023.
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