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Abstract: 

This paper evaluates the benefits for an agent managing the wind power production within a given 

power system to trade in the intraday electricity markets, in a context of massive penetration of 

intermittent renewables. Using a simple analytical model we find out that there are situations when it 

will be costly for this agent to adjust its positions in intraday markets. A first key factor is of course 

the technical flexibility of the power system: if highly flexible units provide energy at very low prices 

in real-time there is no point in participating into intraday markets. Besides, we identify the way wind 

production forecast errors evolve constitutes another essential, although less obvious, key-factor. Both 

the value of the standard error and the correlation between forecasts errors at different gate closures 

will determine the strategy of the wind power manager. Policy implications of our results are the 

following: low liquidity in intraday markets will be unavoidable for given sets of technical 

parameters, it will also be inefficient in some cases to set discrete auctions in intraday markets, and 

compelling players to adjust their position in intraday markets will then generate additional costs.  
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1. Introduction 

The integration of a significant share of variable renewables in the electricity generation mix is a 

source of economic and technical challenges. Wind generation variability and low-predictability 

constitute a major obstacle to the integration of wind farms into electricity markets
2
.   

We study in this article the case when intermittent RES are not isolated form electricity markets and 

considered as a standard generator and we focus on one of the possible solutions to manage the low 

predictability of electricity generation by wind farms: the use of Intraday Markets (IM). Wind 

forecasts improve significantly when realised closer to generation. Giving generators a chance to 

adjust in the IM their commitments realised in the Day-Ahead markets could help renewables to lower 

their imbalance costs. 

Intraday markets give players an opportunity to trade and to modify their production schedules after 

the day-ahead gate-closure. They are already in place in most European countries but their design is 

subject to significant variations. They can in particular be continuous (Germany, Denmark, France) or 

feature discrete auctions (Spain, Italy). Despite wind already representing a significant share of 

generated electricity in several countries, liquidity in IM remains low and the share of electricity 

traded in IM is quite incidental
3
. Complementary rules have sometimes been put into place to increase 

liquidity. For instance, from January 1, 2010, TSOs are required in Germany to balance any difference 

between volumes of power from renewable sources sold in the Day-Ahead auction and the feed-in 

based on the intraday forecast (Besnier, 2009). While such a regulatory measure will lead to a higher 

liquidity in the IM, we argue it could also lead to additional costs. The purpose of this article is to 

study under what conditions it will be beneficial for wind generators to trade in IM to manage wind 

low-predictability. 

                                                           
2
 For more details, the reader can for instance refer to the recent study by MIT: Perez-Arriaga, I.J., 2012. 

Managing large scale penetration of intermittent renewables. MIT. 
3
 In 2009, the volume traded within the organised IM in Germany was 4.2% of the volume traded in the 

organised Day-Ahead market.  For the same year in Spain, the volume traded in the MIBEL IM was under 16% 

of the total volume traded within the organised markets. (Source: Barquin et al. 2011)  
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We build a simple analytical model to study how the prediction error for electricity generated by wind 

farms for a given generation time can be managed in IM. In order to focus on the effects of low-

predictability for a single hour, we do not consider interdependency between adjacent generation 

times. We suppose wind generators are aggregated into a single player who commits to generate a 

given quantity in Day-Ahead markets. Due to forecast errors, this player is exposed to imbalance costs 

when the actual output is different from its financial position. This player is also given the possibility 

to adjust its commitments by interacting with thermal generators
4
 at a set of gates within the IM. We 

also introduce a parameter to take into account the system flexibility in our model. Due to the limited 

technical flexibility of thermal generators, it is more expensive to procure energy on short-notice
5
.  

We use this model to study the average profits of a wind power producer using the best predictions 

available to adjust its position in selected gates from IM and compare it to the average profits realised 

by a producer adopting a more passive attitude. It is less expensive to manage imbalances earlier, but 

there is a risk of correcting self-compensating deviations. This process allows us to establish a set of 

critical values for the technical properties of the forecast error. Relevant parameters include standard 

error, correlation between errors at different times, and additional costs of purchasing electricity 

closer to real-time. Our results indicate that the value of these parameters will determine whether it is 

a good strategy for the producer to use updated predictions to trade in the intraday market at a given 

time. As these parameters evolve with each gate-closure time, setting discrete auctions at a sub-

optimal time will deter participants from trading within this time period.  

2. Previous works 

Despite the relatively low volume of electricity currently traded in intraday markets, their alleged 

potential to assist the integration of intermittent renewables such as wind led to the development of a 

range of studies focusing on this topic. For example, Borggrefe and Neuhoff (2011) and Hiroux and 

                                                           
4
 In this article, the term “thermal generators” is used to refer to all units considered as having a predictable 

output. Thus large hydropower can also be included in this abusive simplification.  
5
 According to a recent study by the MIT Energy Initiative (2012), nuclear plants (featuring low marginal costs) 

require six to eight hours to ramp up to full load, while coal plants can ramp their output at 1.5%-3% per minute. 

The most flexible coal units are the smaller and older plants with less efficiency.  
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Saguan (2010) both mentioned the use of IM to manage wind low-predictability. Borggrefe and 

Neuhoff (2011) presented intraday markets as a tool to keep the volume of balancing services low in 

systems featuring a significant penetration of intermittent renewables but did not consider oscillating 

predictions
6
. Hiroux and Saguan (2010) argued setting the gate closure that closes intraday markets 

near real-time would help to reduce wind integration balancing costs. 

A first category of studies focusing on the IM consists of empirical analysis of players’ participation 

in IM, such as Weber (2010) and Furió et al. (2009). Weber (2010) focused on the volume exchanged 

in several European Intraday Markets. He estimated a theoretical potential for position adjustments of 

wind generators in intraday markets and deduced that the amount of exchanges reached in these 

markets were quite low when compared to this potential. Weber (2010) distinguished two possible 

explanations for poor liquidity. A first reason could be poor market design. In this case, it can 

moreover become a self-sustaining phenomenon, as the absence of liquidity reduces the trust of 

participants into IM. Another possible explanation can be the absence of a real need for IM, i.e. a 

question of market structure
7
. There is a fundamental difference between these two drivers with 

consequences regarding policies to adopt. Yet no clear conclusion was reached regarding the exact 

source of low liquidity. Furió et al. (2009) realised a statistical analysis of trades made in the Spanish 

Intraday markets. This study revealed that about two thirds of the exchanges realised within each of 

the six trading sessions were linked to the hourly horizons negotiated for the last time in this session. 

Most of the time only one gate out of six was really used by participants. They furthermore added the 

low liquidity calculated could be due to an absence of need to make adjustments in the IM. 

A second category of studies features models to estimate the value for wind power generators of 

trading into intraday markets. Usaola and Angarita (2007) considered three possible strategies in IM: 

no bidding, bidding best prediction, and an “optimal” strategic bidding. The frame was the Spanish 

IM, prices were inputs based on historical data, and only one intermediate step was considered in the 

                                                           
6
 The term “oscillating predictions” refers to the case when the successive updated forecasts for the same 

generation time are alternatively increasing and decreasing when getting closer to real-time.  
7
 Stoft (2002) for instance employed “market structure” by opposition to “market architecture” to refer to 

properties of the market closely tied to technology and ownership. We will stick to this definition in this article.  
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IM. Results indicated bidding the best prediction was not the optimal strategy and that it was 

sometimes even preferable not to play at all in IM. Similar results were obtained by De Vos et al. 

(2011) in the Belgian context. Day-Ahead (DA) and Balancing Mechanism (BM) prices were inputs 

taken from the Belgium Power Exchange BELPEX while IM prices were estimated through linear 

interpolation between DA and BM prices. Increasing total balancing costs resulting from trading into 

IM were explained by oscillating predictions. Maupas (2008) employed a quite sophisticated approach 

using a power system simulation and modelling the interaction between intraday and balancing 

markets. He established that it was not beneficial to trade into IM with poor liquidity due to 

interactions between the different hourly provision horizons.  In Maupas’ model, poor liquidity was 

an exogenous input taken into consideration by setting intraday market prices closer to the BM prices 

than to the DA prices.  

While wind and intraday markets have hence been subject to different approaches, we believe there is 

room for further investigation. While there seems to be a general intuition in the studies mentioned in 

this section that trading in IM could result in higher costs in case of poor liquidity and oscillating 

predictions, the calculations made so far did not establish for what kind of forecast precision and for 

what market flexibility it was the case. By using a simpler analytical model, we might not be able to 

deliver accurate numerical results but we will be able to focus on the role played by two key technical 

components: forecast accuracy and system flexibility. 

3. Model 

3.1. Modelling framework 

In our analytical model, wind generators are aggregated into a single player. This player could 

represent a utility operating the totality of wind power plants, a national aggregator, or a TSO 

responsible for managing wind intermittency as it is the case in Germany. Our results can be applied 

to any system featuring one of these structures.  
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Our player generates energy using installed wind capacity   and is also able to procure energy from 

thermal generators in electricity markets. At the gate-closure time of the day-ahead market, this player 

plans to generate a given quantity of wind energy for a final production horizon. However due to 

imperfect forecast, the final output will be different from the player position. This “wind player” will 

therefore need to manage imbalances.  

We compare different strategies in our model ranging from a completely passive strategy to an 

extremely active strategy. A completely passive strategy is to “do nothing” and pay the balancing 

costs when the final production is realised: this is the case when it is not possible to trade into IM or 

when the player is not taking part into these markets. An extremely active strategy is to use the 

updated forecast available at each gate of the IM: the wind player will then be interacting with the 

thermal generators to adjust its positions
8
. As a result, the active player will need to buy or sell less 

energy in balancing markets (only the remaining error at the last intraday market gate closure) but 

might buy and sell more energy in the intraday markets due to oscillating predictions. The completely 

passive strategy and the extremely active strategy constitute the two extreme possibilities of a much 

more complex set of strategies: in practice, in our model, at each available gate of the IM, the player 

can choose whether to adjust its position using the best available forecast. This is illustrated in Figure 

1.  

We assume that the evolution of the system imbalance is driven by the wind manager generation 

imbalances, which is a reasonable assumption in a system featuring a significant share of variable 

renewables managed by a single player
9
. Indeed while load is also uncertain the errors will then be 

smaller and their evolution is easier to anticipate (Maupas, 2008).  

 

                                                           
8
 If the updated forecast indicates a higher output than the previous forecast the wind player can sell more 

energy. If the updated wind forecast indicates a lower output the wind player must buy energy. 

9
 The assumption that a single player is managing the whole wind power generation is therefore a key 

assumption in our discussion. Our results would however remain qualitatively true with a significantly dominant 

player or for any player whose imbalances are strongly positively correlated to the total system imbalances.  
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Figure 1: Illustration of two possible strategies: the player chooses to participate in IM at gates H-24, H-12, H-4 and 

H-2 (left side) vs. the player decides not to participate at all in IM (right side). 

Thermal generators have a limited flexibility. The least flexible plants will not be able to adapt their 

production to the demand when getting closer to the production horizon or will only be able to adapt it 

in a restricted way respecting ramping constraints. They will therefore withdraw part of their offers 

from the supply function, as illustrated in Figure 2. The resulting inverse supply function will 

therefore feature a steeper slope, and prices will get more expensive when getting closer to the 

production horizon
10

. Moreover, the units most likely to provide the required flexibility to manage 

wind variability are usually the ones with high marginal costs
11

 (see IEA (2012)). 

At last, energy procured in real-time is not always charged at cost-reflective prices (Vandezande et al., 

2010). Penalties can be imposed by the system operator to provide ex-ante balancing incentives to 

participants. Such penalties could be included in our model by higher prices for energy procured and 

lower revenues from selling energy in real-time markets. Due to these extra-costs, participants should 

then have higher incentives to participate in intraday markets. 

 

                                                           
10

 Exercise of market power could strengthen the impact of this phenomenon, as illustrated by Green and 

Vasilakos (2010): when the residual demand for power production by flexible units is high, these units exercise 

market power to a greater extent and prices rise. 

11
 It could be argued some very flexible power units, typically hydropower units, also feature low marginal 

costs. However these generators, as they are the most flexible, can choose to sell their production at any time-

horizon. It is likely they will sell their production in earlier markets if prices are higher in these higher markets.   
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Figure 2: Evolution of the economic merit-order due to limited flexibility 

3.2. Model implementation 

Wind player behaviour 

At time   , the wind player plans to generate a wind energy quantity    at time    using the best 

available forecast.  

The wind player is then given the possibility to adjust its position at a set of gates determined by 

market rules. Among the eligible gates, the player will choose to participate (adopt an active strategy) 

in n-1 gates at times             ⟦     ⟧. This player is therefore taking part in n+1 gates at 

times             ⟦   ⟧:    is the day-ahead market gate closure time,    is the production horizon 

when electricity must be generated. For instance, in figure 2 the player decides to participate in IM at 

gates H-24, H-12, H-4 and H-2 and the    are then    = H-24,    = H-12,    = H-4,    = H-2 and   = 

H. 

At time   , this player will then use the updated production forecast   . The player will cover the 

quantity    =    -    buying energy from thermal generators.    is hereby defined as the net demand 

at time   . This player following the active strategy at time    and      will then buy the quantity    

     at time   .  
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At the final time   , the wind player will cover the net demand    and pay the corresponding 

imbalance costs. A player having adopted the active strategy in gate      will be charged the costs 

corresponding to the remaining energy quantity        . By opposition, a player having adopted 

the passive strategy will be charged the costs corresponding to the energy quantity      .  

The quantities       ⟦   ⟧ are random variables whose behaviour depends on the wind farms 

characteristics and the wind nature itself. In order to make calculations simpler, we define the variable 

   representing the wind production forecast error at time    as a share of the realised wind 

production.  

   
     
  

 

The resulting random variable     has an expected value  (  )    and a variance   
 . We suppose    

and    are independent: 

     ⟦   ⟧    (     )     

This simplification is made under the assumption that the forecast error     expressed as a share of the 

realised wind production is not correlated to the realised wind production   . In other words, there is 

no systematic relationship between wind power generation and wind power prediction accuracy
12

. 

Moreover  (  )    indicates there is no systematic underestimation or overestimation at a given 

time. This is a very reasonable assumption as a forecasting tool presenting such a bias would be 

adjusted. 

Prices formation 

In our model wind power producers interact with thermal generators to buy the extra energy they need 

or to sell surplus energy. Demand-side is not considered as we suppose the balancing needs driven by 

the consumption-forecast error will be insignificant in a power system featuring high penetration by 

                                                           
12

 An example of empirical study analysing this property of wind power forecasts can be found in section 6 of 
Lange (2003).  
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intermittent RES
13

. The available thermal generators obey at time    to the following aggregated 

inverse supply function. For a net demand  , the corresponding  price  ̅( ) is: 

 ̅( )        

The price function is therefore linear and parameters a and b are inputs that depend on the power 

system properties. The variable b will be higher when the range of marginal costs of the different 

generation units will be higher. 

The evolution of costs of dealing with imbalances will play a significant part in the trade-off wind 

generators are to face. To take flexibility into account in our model we introduce a “penalty function” 

 ( ). We assume the value of the penalty function  ( ) increases with time t: the extra cost of trading 

later is higher closer to real time. 

We suppose a producer who committed at time      to buy the quantity       and trading the quantity 

        at time    will pay a price  (          ). The resulting price function obeys to the following 

equation graphically illustrated in Figure 3 :  

 (          )   ̅ (     (   (  ))  (       )) 

  (          )   ̅(  )     (  )  (       ) 

In case the system is not perfectly flexible (i.e.        ( )   )  the same quantity of electricity 

bought later by wind generators (when generation by thermal units is higher) will be more costly, 

while electricity sold later by wind generators (when generation by thermal units is lower)  will lead 

to lower profits.   

                                                           
13

 While outages of thermal units will still be relevant for the network security we considered that due to the low 

frequency of occurrence they could be neglected in our financial analysis. 
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Figure 3: Evolution of the inverse supply function in our model 

It is important to point out that representing the classical stepwise merit-order curve by a linear merit-

order curve is a quite restrictive assumption. For a given time, in a real electricity market, start-up 

costs and additional non-convexities might challenge this hypothesis. However the scope of this 

article is to provide insights of phenomena taking place into IM, focusing on a single production hour. 

In this context, we considered that neglecting non-convexities constituted a reasonable assumption. 

The same argument also applies to the approximation by the supply function at different times    .  

Picking the best strategy 

A wind power producer having chosen to participate in IM at times    and      will trade the quantity 

        at time    and pay a price  (          ). The total cost     for a participants being active at 

times           ⟦     ⟧ will therefore be the sum of these transactions
14

: 

   (               )    ∑[ (          )  (       )]

 

   

 

By opposition a producer staying completely out of the intraday market (what we defined as the 

passive strategy) will only buy the initial amount of energy at    and pay the imbalance costs 

corresponding to quantity       at time     The total cost     will then be: 

   (        )    (        )  (     ) 
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 We consider that transaction costs are not significant and can be neglected in this study. 
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The player considered will be risk-neutral in our analysis. In order to compare the efficiency of these 

two strategies, the chosen active strategy and the passive strategy, we will have a look at the expected 

value of the difference between these two total costs  (       ).  

  (       )   ̅(   (               )     (        ))  

 

We will then compare the case of a player only active at times                  with the case of the 

player in addition active at time    with            . We will study the sign of 

 (                    )   (                 )   to determine whether it is worth or not being 

active at time    in addition to                  . 

4. Analytical results 

4.1. General case 

To express more precisely the value of  (       ) it is necessary to introduce the correlation 

coefficient      between    and    defined as:       
   (     )

    
 

It is then possible to show the following result (see Appendix for demonstration): 

 (        )     (  
 )  [∑  

 

   

 ∑     

 

   

] 

     
                    

    (  )  (  
      

               )  

    
   (  )            

This result can deliver a few insights. First of all, the costs of picking the wrong strategy (whether it is 

to play or not at a given time in intraday markets) will be proportional to both the slope of the supply 

curve   and the expected value of the square of wind power production  (  
 )  It is important to point 

out that  (  
 ) is higher when the average production is higher but also when the variability of the 
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production is higher
15

. In a system where wind production is steadier, for example because the wind is 

itself more steady or because wind farms are more dispersed, the errors will also be less important. In 

a system where the marginal costs of thermal plants, flexible or not, are roughly the same, it will 

matter less which ones are called to generate.  

Finally, the relevance of trading into these gates will be the result of a trade-off between the different 

members of this equation. The    terms are always positive and represent the “flexibility penalty” of 

buying energy latter in intraday markets when the generator adopts the active strategy. The term     

is always negative and represents the same penalty paid in case the wind generator adopts a passive 

strategy. The value of the    term depends on the system characteristics and can be either positive or 

negative. If correlation        between      and    is poor then losses resulting from oscillating 

predictions will be high and it might not be worth trading in intraday markets.  

4.2. Results in a simple case with one gate closure in the intraday market  

In a recent study of the Spanish electricity market, Furió et al. (2009) estimated that about two thirds 

of exchanges realised in the IM take place during the last possible platform. It means players use only 

one gate of the IM for a given hour. It is therefore interesting, in addition to being a good educational 

example, to study the case when the player is deciding whether to adjust its position (or not) at a 

single gate between the day-ahead electricity market and the generation time.  
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 Indeed  (  
 ) = ( (  ))

 
    (  ) 
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Figure 4: Examples of typical forecasts for given sets of parameters 

 

Our approach consists in identifying for a given flexibility which forecasting abilities will lead to an 

active use of the additional gate. We introduce the ratio     : 

       ⟦     ⟧       
  

  
      

     is made of two components: 
  

  
 indicates how much information is gained between    and    while 

     is a measure of the correlation between these two pieces of information. An illustration with two 

steps is provided in Figure 4. 

In our simple case when      we are able to identify two cases.  

Lemma 1.1 (see demonstration in annex): 

     

For a player being given the possibility to trade at time   : 

           (  )   (  )  (     )    : it will be beneficial to adopt an active strategy at time   . 
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Lemma 1.2 (see demonstration in annex): 

    

 For a player being given the possibility to trade at time   : 

             ̅ /  (  )    ̅      (  ),  (     )     :  it will not be beneficial to adopt an 

active approach at        . 

It is possible to go beyond these mathematical results and explore their meanings.  In case 
  

  
 is low, 

there is little interest in trading at    since the forecast is not much more accurate. In case      is low, 

there is little interest in trading at    as there are higher risks of spoiling energy due to oscillating 

prediction errors. That’s why      is a key parameter.  

From lemma 1.1, it is interesting for the producer to anticipate imbalances at    if the forecast error 

evolution is good enough.  

From Lemma 1.2, if the anticipation is not really helpful, i.e.      is low, then it can be interesting or 

not to anticipate imbalances. If imbalances are never very expensive it is not worth taking the risk of a 

wrong anticipation. 

4.3. Interest of trading at a given gate closure in the general case 

Most intraday markets feature several gates (six in Spain) or allow continuous trading. Therefore we 

will have a look in this section at a general case when a participant is adjusting its position in     

gates in the IM at times            ⟦     ⟧. We study the effects of being active at one more gate 

at time    and identify a set of criteria that will favour or discriminate against an active approach at 

this gate. By extension it is then possible to determine in which case a continuous market will be fully 

used by participants when   tends to infinity.  

Lemma 2.1 (see demonstration in annex): 

 For a player adopting an active strategy in IM at gate closure times                  being given 

the possibility to trade at time    with             : 
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{
             
      

    (                    )   (                 ) : it will be beneficial to 

adopt an active strategy at   . 

Lemma 2.2 (see demonstration in annex): 

For a player adopting an active strategy in IM at gate closure times             being given the 

possibility to trade at time    with             : 

{
             
      

  

       ̅   (    )    ̅      (  )  (                    )    (                 )   it will not 

be beneficial to adopt an active approach at     . 

We can deduce from lemma 2.2 that for a given flexibility of the power system and a specific forecast 

error evolution the active strategy might be more costly than the passive one.  This result is coherent 

with the results obtained by Maupas (2008), De Vos et al. (2011) and Usaola and Angarita (2007).  

5. Results interpretation 

5.1. Liquidity in intraday markets 

Conclusion 1: Low liquidity in intraday markets will be unavoidable for a given set of technical 

parameters.  

A first insight we can get from our analysis is that poor liquidity in intraday markets may result from a 

rational behaviour of the participants. Our results indeed indicate that the poor liquidity of intraday 

markets could be explained by the poor information players have to deal with. Lemma 2.2 shows 

oscillating predictions can deter the players from trading in the IM provided it is not too expensive to 

procure energy in the balancing markets. This is an intuition already exposed by some of the authors 

mentioned in the section  2 of this article, but our results enlighten the key role played by the 

factor     . When the value of this parameter is low, it means the gain of information when getting 

closer to real-time is not sufficient to compensate the oscillating nature of wind forecasts. Participants 
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acting rationally will then choose not to adjust their positions between day-ahead markets and real-

time. Intraday markets will not be used by participants because they do not meet the needs of the 

participants.  

Conclusion 2: In some cases, compelling players to trade into intraday markets will generate 

additional costs.  

As long as conditions remain unsuitable, it will not be possible to increase both efficiency and 

liquidity by changing rules. Compelling wind power generators to trade in the intraday markets will 

mechanically lead to a more liquid intraday market, but these obligations can potentially result in 

higher total balancing costs. Higher volumes should not be the objective of regulators. The volume of 

exchanges in the intraday markets will spontaneously rise (or decrease) following a higher penetration 

of renewables or technological changes. A prerequisite is obviously that the intraday markets must be 

in place in the power system, even if they are not used by most participants. If the forecasting tools 

become good enough, producers will then apply voluntarily what we defined as the active strategy, in 

order to minimise their costs, as shown in lemma 2.1.   

Similarly, setting penalties in real-time markets to incentivise participants to balance ex-ante their 

positions will lead to a higher participation in intraday markets, as in practice the extra cost   (  ) of 

trading in real-time will increase. However the actual costs of generating electricity will not be 

transformed by such financial penalties and these additional adjustments will not result in a higher 

efficiency. Increased participation in intraday markets will then be a form of hedge against imbalances 

with negative consequences similar to the ones described in Vandezande et al. (2010). 

5.2. Trade-offs between continuous trading and discrete auctions 

As mentioned in the introduction, there are two main options available to design intraday markets: 

continuous markets and discrete auctions (Barquin et al., 2011). In a continuous market, bids are 

matched one by one as soon as they match (i.e. when the bid price is higher than the offer price). The 

main alternative consists in a set of discrete auctions.  
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Conclusion 3: Setting discrete auctions in intraday markets may lead to inefficiencies due to lost 

trading opportunities. 

By opposition to continuous markets, discrete auctions restrict trading to a set of pre-established 

times. Yet we know from our analysis that the strategy of a player will differ at different times. 

Depending on the wind forecast properties, a player might for instance be willing to trade at 10 a.m. 

but not at 9 a.m. or 11a.m. In a continuous market, players can use the experience they acquired day 

after day, and they will then be able to optimise their behaviour and trade when it is the most 

interesting for them. In a discrete market players will not be given such freedom: if conditions are not 

suitable (i.e. if the gates are set at times that do not fit this player) players will not trade, as shown by 

lemma 2.2.  

That’s why we argue restricting trading at imposed gates (as it is the case in an IM featuring discrete 

auctions) may lead to inefficiencies, additional costs, and lost trading opportunities. This result shall 

temper assumptions that discrete auctions will lead to increased trade in IM
16

. Obviously there are 

other sources of inefficiencies in continuous markets related to their inner fundamental properties: as 

trades are made on a first-come first-served basis in a continuous market, some trades that would not 

have taken place in a discrete market might take place, and the resulting prices will  be less 

transparent. However, the decision to put into place continuous or discrete intraday markets should 

take into account the advantages of continuous markets that we described in addition to these 

drawbacks. 

It could be argued that the gate-closure times could be set in a way to reflect players’ preferences, 

which would only be theoretically possible in the case of a single balancing responsible party. Gates 

should in this case be set after analysing wind forecast evolutions and should be regularly updated as 

forecasting technologies and the generation park evolve. Such a painful administrative process could 
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 The case for discrete auctions is often illustrated by the relatively high liquidity in the Spanish intraday 

markets. Yet it is important to take into account the fact that in the Spanish electricity market, portfolio bidding 

is not allowed. Therefore, as underlined by Pérez Arriaga (2005), a significant share of the volumes exchanged 

in the intraday markets is due to internal re-allocation by participants of the dispatch resulting from the daily 

market. It is not the case in most other European electricity markets where portfolio bidding is implemented. 

Therefore the case of the Spanish IM should be exploited carefully.  
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be avoided by putting into place continuous markets. The losses would then offset the potential 

benefits from more efficient allocation in markets featuring discrete auctions. 

6. Conclusion 

In this paper, we assessed the different strategies that could be employed in intraday markets by 

parties responsible for managing wind forecast error. Participants trading in intraday markets face a 

trade-off: being exposed to imbalance charges or adjusting positions in the intraday market when 

some relevant information is still missing. Therefore we developed a simple analytical model 

allowing us to take into account both the system flexibility (as the lower the flexibility, the higher 

imbalance charges) and the nature of the wind forecast evolution (as it determines the information 

available to participants). 

While discussions about optimal gate-closures usually focused on the average forecast error and the 

system flexibility when getting closer to real-time we demonstrated that correlation between forecast 

errors at different times should be taken into account. We were able to identify the parameter       

reflecting both the oscillating nature of wind forecasts and the level of information gained when 

getting closer to real-time. We showed this parameter plays a key-role in determining the participants’ 

strategies.  

Our analytical results underlined the fact that oscillating predictions could indeed explain the poor 

liquidity in IMs. In this case, a higher volume of exchanges in the intraday market should not be an 

objective per se as poor liquidity could simply reflect the fact taking part into these intraday markets 

will lead to higher costs: reducing total balancing costs should remain the main objective of regulated 

TSOs and regulators when establishing rules.  

Our analysis also revealed it was unlikely a set of gates would please all participants. Players 

responsible for balancing wind low-predictability will achieve cost-optimisation spontaneously if they 

are given the opportunity to trade when they need it. We argue continuous markets provide 

participants with a sufficient degree of freedom to express their needs. While the liquidity remains 

low in continuous markets in place in Europe it should yet become naturally higher with an increasing 
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share of renewables in the generation mix, as incentives to reduce costs should lead participants to 

optimise their participation in intraday markets. Lost opportunities resulting from setting discrete 

auctions might offset their benefits. 

It must be pointed out that our model has been designed to provide general insights about the 

behaviour of wind players in intraday markets. As a consequence, rather strong assumptions have 

been employed, and the results obtained might therefore not be universally valid. Relaxing some of 

the assumptions described in section  3 should however not impact our results significantly: for 

instance start-up costs that we neglected tend to increase when getting closer to real-time and could be 

internalised in the supply function. In this paper, it has also been considered that players are risk-

neutral. Risk-averse players might have stronger incentives to participate in IM (thus reducing their 

exposure to imbalances in real-time markets) but our results should not be qualitatively impacted 

when relaxing this assumption.  

Another key-assumption we made is that wind power production is managed in a centralised way. 

While this assumption is close to reality in some power systems (such as Germany) it might not 

reflect the more complex situation in other power systems. This assumption is essential when 

considering that the system total imbalances are driven by the sign of our player imbalances: however 

our results will remain qualitatively true for any player whose imbalances are strongly (positively) 

correlated with the total system imbalances. This will in particular be the case if the main wind power 

producers own similar generation parks: a similar technology employed, in location with similar 

properties. A possible extension of our work could be to consider the interactions of several players 

managing only partly-correlated wind power sources.  



21 

 

Appendixes 

A.1 Nomenclature 

The following table contains a summary of the variables employed in this article.  

Variable Meaning 

  Number of gates after the day-ahead markets closure 

   Day-ahead market gate closure time 

   Production horizon  

     ⟦     ⟧ Closure time of the i
th
 gate of the intraday market  

  Total wind installed capacity  

  ,   ⟦     ⟧ Forecasted wind output at    for the production horizon    

   Realised wind output at the production horizon    

  ,   ⟦   ⟧ Net demand associated to    

  ,   ⟦     ⟧ Forecast error at time    as a share of the realised output 

 (  ) Expected value of    

  
 ,   ⟦     ⟧ Variance of    

     Correlation coefficient between    and    

     Ratio representing the quality of the forecast evolution (see  4.2) 

a Constant parameter of the inversed supply-function at time    

b Slope of the inversed supply-function at time    

 ̅( ) Price associated  to a net demand q when all units are available 

 ( ) Function representing the extra-cost when trading at time    

 (          ) Price associated to demand          at time    

    Costs associated to an active strategy in intraday markets 

    Costs associated to a passive strategy in intraday markets 

  Expected value of the difference between     and     
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A.2: Expression of    (       ) 

 (       )   (∑[ (          )  (       )]

 

   

  (        )  (     )) (1) 

By definition,  

              (          )   ̅ (     (   (  ))  (       )) (2) 

And  

     ̅( )        (3) 

Thus by developing (1) we obtain:  

 (       )     (∑ [   (       )]
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We will then estimate each of the four members of this equation  
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Thus following notations defined in  3.2 we obtain: 

 (   (       ))   ((     )  (       )    
 ) 

And as by assumption (see section 3.2)       ⟦   ⟧    (     )    and  (  )    
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 (   (       ))   (  
 )   ((     )  (       )) 

Following notations defined in  3.2 we obtain   (   )   ⟦   ⟧ : 

 (    )     (     )   (  )   (  ) 

And, as  (  )    and by definition     (     )           

 (    )           

 

 (   (       ))   (  
 )  (  

                                    )  (4.1) 

And by a similar process: 
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Moreover: 
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We can therefore write (4) as  
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Where: 
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A.3: Proof of lemma 1.1: 

We apply equation (5) in the special case when     
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We assume that   
    

  : the uncertainty increases with the prediction horizon.  

If we assume                         we obtain the following results:  

  
          

  
    

           
   (7.1) 

And as   
    

                
    

    (  
          )    

    
   

(  
    

 )

  
    

           
    (7.2) 

We also know that  (  )   (  ) as the flexibility penalty  ( ) increases with   

                 (  )      (  )     (8) 

Using (7.1), (7.2) and (8) we can show that the following equation is verified 
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And according to (7) and (9),   (      )    

 

A.4: Proof of lemma 1.2: 

We assume                          

By analogy to the proofs of (7.1) and (7.2), we can show:  
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And therefore: 
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Using (7),    ̅ /  (  )    ̅      (  ),  (     )     

 

A.5: Proof of lemma 2.1: 

A player adopting an active strategy in IM at gate closure times                  is being given the 

possibility to trade at time    with               
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We make two assumptions.  

Assumption 1:               

Assumption 2:        

By definition it will be beneficial to adopt an active strategy at    if and if only: 

 (                    )    (                 ) (13) 

Most of the terms are present on each side and by developing and simplifying (13) is equivalent to 

     
                                      (  )   (  

    
           )

   (    )    (  
    

                              ) 
(14) 

Under assumption 1,               and therefore  

                          (15.1) 

In addition we know that we assumed greater uncertainty further away from the production horizon: 

  
     

  (15.2) 

Using (15.1) and (15.2) 

  
    

                                 (16) 

And according to (16) it is possible to rewrite (  ) as: 

 (    )   (  )  
  
    

           

  
    

                              
  
  

  
                                    

  
    

                              
  
   (17) 

We know have to show that inequality (17) is true to ensure that inequality (13) is true.  

Under assumption 2:              
            



27 

 

Under assumption 1:                     
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Besides                           
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          ,  

  
    

           

  
    

                              
   (18.2) 

We also know that by definition   (    )   (  ) as the flexibility penalty  ( ) increases with  

   Hence using (18.1) and (18.2):  

 (    )   (  )  
  
    

           

  
    

                              
  
  

  
                                    

  
    

                              
  
   (19) 

And (17) is verified, which is equivalent to  (                    )    (                 ): it is 

beneficial to play the active strategy. 

A.6: Proof of lemma 2.2: 

Similar to 1.2 using equation (17). 
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